Cargando…

X chromosome transmission ratio distortion in Cftr +/- intercross-derived mice

BACKGROUND: Cystic fibrosis (CF) mice, created with a genetically engineered mutation in the Cystic fibrosis transmembrane conductance regulator (Cftr) gene, may develop intestinal plugs which limit their survival past weaning. In a studied population of genetically mixed CF mice differences in alle...

Descripción completa

Detalles Bibliográficos
Autores principales: Haston, Christina K, Humes, Daryl G, Lafleur, Melanie
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1885815/
https://www.ncbi.nlm.nih.gov/pubmed/17506901
http://dx.doi.org/10.1186/1471-2156-8-23
Descripción
Sumario:BACKGROUND: Cystic fibrosis (CF) mice, created with a genetically engineered mutation in the Cystic fibrosis transmembrane conductance regulator (Cftr) gene, may develop intestinal plugs which limit their survival past weaning. In a studied population of genetically mixed CF mice differences in allelic ratios at particular loci, between surviving CF mice and mice with the lethal intestinal defect, were used to map cystic fibrosis modifier gene one, Cfm1. Using this approach, we previously identified an X chromosome locus which may influence the survival to weaning of C57BL/6J × BALB/cJ F2 CF mice. We also detected two regions of transmission ratio distortion, independent of Cftr genotype, in a limited dataset. To investigate these findings, in this study we have genotyped 1208 three-week old F2 mice, and 186 day E15.5 embryos, derived from a congenic (C57BL/6J × BALB/cJ) F1 Cftr +/- intercross, for the putative distortion regions. RESULTS: An excess of homozygous BALB genotypes, compared to Mendelian expectations, was detected on chromosomes 5 (p = 5.7 × 10(-15)) and X (p = 3.0 × 10(-35)) in three-week old female mice but transmission ratio distortion was not evident in the tested region of chromosome 3 (p = 0.39). Significant pre-weaning lethality of CF mice occurred as 11.3% (137/1208) of the three-week old offspring were identified as CF mice. X chromosome genotypes were not, however, distorted in the female CF mice (p = 0.62), thus the significant non-Mendelian inheritance of this locus was dependent on CF status. The survival of CF embryos to day E15.5 was consistent with Mendelian expectations (42/186 = 23%), demonstrating the loss of CF mice to have occurred between E15.5 and three weeks of age. The excess of X chromosome homozygous BALB genotypes was recorded in female embryos (p = 0.0048), including CF embryos, indicating the distortion to be evident at this age. CONCLUSION: Two of three previously suggested loci of transmission ratio distortion were replicated as distorted in this mouse cross. The non-Mendelian inheritance of X chromosome genotypes implicates this region in the survival to weaning of non-CF mice.