Cargando…
Mitochondria-dependent and -independent Regulation of Granzyme B–induced Apoptosis
Granzyme B (GraB) is required for the efficient activation of apoptosis by cytotoxic T lymphocytes and natural killer cells. We find that GraB and perforin induce severe mitochondrial perturbation as evidenced by the release of cytochrome c into the cytosol and suppression of transmembrane potential...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1999
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1887691/ https://www.ncbi.nlm.nih.gov/pubmed/9874570 |
Sumario: | Granzyme B (GraB) is required for the efficient activation of apoptosis by cytotoxic T lymphocytes and natural killer cells. We find that GraB and perforin induce severe mitochondrial perturbation as evidenced by the release of cytochrome c into the cytosol and suppression of transmembrane potential (Δψ). The earliest mitochondrial event was the release of cytochrome c, which occurred at the same time as caspase 3 processing and consistently before the activation of apoptosis. Granzyme K/perforin or perforin treatment, both of which kill target cells efficiently but are poor activators of apoptosis in short-term assays, did not induce rapid cytochrome c release. However, they suppressed Δψ and increased reactive oxygen species generation, indicating that mitochondrial dysfunction is also associated with this nonapoptotic cell death. Pretreatment with peptide caspase inhibitors zVAD-FMK or YVAD-CHO prevented GraB apoptosis and cytochrome c release, whereas DEVD-CHO blocked apoptosis but did not prevent cytochrome c release, indicating that caspases act both up- and downstream of mitochondria. Of additional interest, Δψ suppression mediated by GraK or GraB and perforin was not affected by zVAD-FMK and thus was caspase independent. Overexpression of Bcl-2 and Bcl-X(L) suppressed caspase activation, mitochondrial cytochrome c release, Δψ suppression, and apoptosis and cell death induced by GraB, GraK, or perforin. In an in vitro cell free system, GraB activates nuclear apoptosis in S-100 cytosol at high doses, however the addition of mitochondria amplified GraB activity over 15-fold. GraB- induced caspase 3 processing to p17 in S-100 cytosol was increased only threefold in the presence of mitochondria, suggesting that another caspase(s) participates in the mitochondrial amplification of GraB apoptosis. We conclude that GraB-induced apoptosis is highly amplified by mitochondria in a caspase-dependent manner but that GraB can also initiate caspase 3 processing and apoptosis in the absence of mitochondria. |
---|