Cargando…
Bone Marrow Allograft Rejection Mediated by a Novel Murine NK Receptor, NKG2I
Natural killer (NK) cells mediate bone marrow allograft rejection. However, the molecular mechanisms underlying such a rejection remain elusive. In previous analyses, it has been shown that NK cells recognize allogeneic target cells through Ly-49s and CD94/NKG2 heterodimers. Here, we describe identi...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1887729/ https://www.ncbi.nlm.nih.gov/pubmed/14707119 http://dx.doi.org/10.1084/jem.20030851 |
Sumario: | Natural killer (NK) cells mediate bone marrow allograft rejection. However, the molecular mechanisms underlying such a rejection remain elusive. In previous analyses, it has been shown that NK cells recognize allogeneic target cells through Ly-49s and CD94/NKG2 heterodimers. Here, we describe identification and characterization of a novel murine NK receptor, NKG2I, belonging to the NKG2 family. NKG2I, which was composed of 226 amino acids, showed ∼40% homology to the murine NKG2D and CD94 in the C-type lectin domain. Flow cytometric analysis with anti-NKG2I monoclonal antibody (mAb) revealed that expression of NKG2I was largely confined to NK and NKT cells, but was not seen in T cells. Furthermore, anti-NKG2I mAb inhibited NK cell–mediated cytotoxicity, whereas cross-linking of NKG2I enhanced interleukin 2– and interleukin 12–dependent interferon-γ production. Similarly, the injection of anti-NKG2I mAb before the allogeneic bone marrow transfer in vivo impinged on the function of NKG2I, resulting in the enhanced colony formation in the spleen. NKG2I is a novel activating receptor mediating recognition and rejection of allogeneic target cells. |
---|