Cargando…
Regeneration of neural crest derivatives in the Xenopus tadpole tail
BACKGROUND: After amputation of the Xenopus tadpole tail, a functionally competent new tail is regenerated. It contains spinal cord, notochord and muscle, each of which has previously been shown to derive from the corresponding tissue in the stump. The regeneration of the neural crest derivatives ha...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1890292/ https://www.ncbi.nlm.nih.gov/pubmed/17521450 http://dx.doi.org/10.1186/1471-213X-7-56 |
_version_ | 1782133714770198528 |
---|---|
author | Lin, Gufa Chen, Ying Slack, Jonathan MW |
author_facet | Lin, Gufa Chen, Ying Slack, Jonathan MW |
author_sort | Lin, Gufa |
collection | PubMed |
description | BACKGROUND: After amputation of the Xenopus tadpole tail, a functionally competent new tail is regenerated. It contains spinal cord, notochord and muscle, each of which has previously been shown to derive from the corresponding tissue in the stump. The regeneration of the neural crest derivatives has not previously been examined and is described in this paper. RESULTS: Labelling of the spinal cord by electroporation, or by orthotopic grafting of transgenic tissue expressing GFP, shows that no cells emigrate from the spinal cord in the course of regeneration. There is very limited regeneration of the spinal ganglia, but new neurons as well as fibre tracts do appear in the regenerated spinal cord and the regenerated tail also contains abundant peripheral innervation. The regenerated tail contains a normal density of melanophores. Cell labelling experiments show that melanophores do not arise from the spinal cord during regeneration, nor from the mesenchymal tissues of the skin, but they do arise by activation and proliferation of pre-existing melanophore precursors. If tails are prepared lacking melanophores, then the regenerates also lack them. CONCLUSION: On regeneration there is no induction of a new neural crest similar to that seen in embryonic development. However there is some regeneration of neural crest derivatives. Abundant melanophores are regenerated from unpigmented precursors, and, although spinal ganglia are not regenerated, sufficient sensory systems are produced to enable essential functions to continue. |
format | Text |
id | pubmed-1890292 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-18902922007-06-08 Regeneration of neural crest derivatives in the Xenopus tadpole tail Lin, Gufa Chen, Ying Slack, Jonathan MW BMC Dev Biol Research Article BACKGROUND: After amputation of the Xenopus tadpole tail, a functionally competent new tail is regenerated. It contains spinal cord, notochord and muscle, each of which has previously been shown to derive from the corresponding tissue in the stump. The regeneration of the neural crest derivatives has not previously been examined and is described in this paper. RESULTS: Labelling of the spinal cord by electroporation, or by orthotopic grafting of transgenic tissue expressing GFP, shows that no cells emigrate from the spinal cord in the course of regeneration. There is very limited regeneration of the spinal ganglia, but new neurons as well as fibre tracts do appear in the regenerated spinal cord and the regenerated tail also contains abundant peripheral innervation. The regenerated tail contains a normal density of melanophores. Cell labelling experiments show that melanophores do not arise from the spinal cord during regeneration, nor from the mesenchymal tissues of the skin, but they do arise by activation and proliferation of pre-existing melanophore precursors. If tails are prepared lacking melanophores, then the regenerates also lack them. CONCLUSION: On regeneration there is no induction of a new neural crest similar to that seen in embryonic development. However there is some regeneration of neural crest derivatives. Abundant melanophores are regenerated from unpigmented precursors, and, although spinal ganglia are not regenerated, sufficient sensory systems are produced to enable essential functions to continue. BioMed Central 2007-05-24 /pmc/articles/PMC1890292/ /pubmed/17521450 http://dx.doi.org/10.1186/1471-213X-7-56 Text en Copyright © 2007 Lin et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Lin, Gufa Chen, Ying Slack, Jonathan MW Regeneration of neural crest derivatives in the Xenopus tadpole tail |
title | Regeneration of neural crest derivatives in the Xenopus tadpole tail |
title_full | Regeneration of neural crest derivatives in the Xenopus tadpole tail |
title_fullStr | Regeneration of neural crest derivatives in the Xenopus tadpole tail |
title_full_unstemmed | Regeneration of neural crest derivatives in the Xenopus tadpole tail |
title_short | Regeneration of neural crest derivatives in the Xenopus tadpole tail |
title_sort | regeneration of neural crest derivatives in the xenopus tadpole tail |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1890292/ https://www.ncbi.nlm.nih.gov/pubmed/17521450 http://dx.doi.org/10.1186/1471-213X-7-56 |
work_keys_str_mv | AT lingufa regenerationofneuralcrestderivativesinthexenopustadpoletail AT chenying regenerationofneuralcrestderivativesinthexenopustadpoletail AT slackjonathanmw regenerationofneuralcrestderivativesinthexenopustadpoletail |