Cargando…
Fusion of FNA-cytology and Gene-expression Data Using Dempster-Shafer Theory of Evidence to Predict Breast Cancer Tumors
Decision-in decision-out fusion architecture can be used to fuse the outputs of multiple classifiers from different diagnostic sources. In this paper, Dempster-Shafer Theory (DST) has been used to fuse classification results of breast cancer data from two different sources: gene-expression patterns...
Autores principales: | Raza, Mansoor, Gondal, Iqbal, Green, David, Coppel, Ross L |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics Publishing Group
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1891684/ https://www.ncbi.nlm.nih.gov/pubmed/17597882 |
Ejemplares similares
-
Sensor Data Fusion for Accurate Cloud Presence Prediction Using Dempster-Shafer Evidence Theory
por: Li, Jiaming, et al.
Publicado: (2010) -
A classifier-combined method for grading breast cancer based on Dempster-Shafer evidence theory
por: Liu, Zhou, et al.
Publicado: (2023) -
Novel Paradigm for Constructing Masses in Dempster-Shafer Evidence Theory for Wireless Sensor Network's Multisource Data Fusion
por: Zhang, Zhenjiang, et al.
Publicado: (2014) -
Multisensor Data Fusion in IoT Environments in Dempster–Shafer Theory Setting: An Improved Evidence Distance-Based Approach
por: Hamda, Nour El Imane, et al.
Publicado: (2023) -
Incomplete Information Management Using an Improved Belief Entropy in Dempster-Shafer Evidence Theory
por: Yang, Bin, et al.
Publicado: (2020)