Cargando…
Beta barrel trans-membrane proteins: Enhanced prediction using a Bayesian approach
Membrane proteins, which constitute approximately 20% of most genomes, form two main classes: alpha helical and beta barrel transmembrane proteins. Using methods based on Bayesian Networks, a powerful approach for statistical inference, we have sought to address β-barrel topology prediction. The β-b...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics Publishing Group
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1891693/ https://www.ncbi.nlm.nih.gov/pubmed/17597895 |
Sumario: | Membrane proteins, which constitute approximately 20% of most genomes, form two main classes: alpha helical and beta barrel transmembrane proteins. Using methods based on Bayesian Networks, a powerful approach for statistical inference, we have sought to address β-barrel topology prediction. The β-barrel topology predictor reports individual strand accuracies of 88.6%. The method outlined here represents a potentially important advance in the computational determination of membrane protein topology. |
---|