Cargando…

Beta barrel trans-membrane proteins: Enhanced prediction using a Bayesian approach

Membrane proteins, which constitute approximately 20% of most genomes, form two main classes: alpha helical and beta barrel transmembrane proteins. Using methods based on Bayesian Networks, a powerful approach for statistical inference, we have sought to address β-barrel topology prediction. The β-b...

Descripción completa

Detalles Bibliográficos
Autores principales: Taylor, Paul D, Toseland, Christopher P, Attwood, Teresa K, Flower, Darren R
Formato: Texto
Lenguaje:English
Publicado: Biomedical Informatics Publishing Group 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1891693/
https://www.ncbi.nlm.nih.gov/pubmed/17597895
_version_ 1782133778245746688
author Taylor, Paul D
Toseland, Christopher P
Attwood, Teresa K
Flower, Darren R
author_facet Taylor, Paul D
Toseland, Christopher P
Attwood, Teresa K
Flower, Darren R
author_sort Taylor, Paul D
collection PubMed
description Membrane proteins, which constitute approximately 20% of most genomes, form two main classes: alpha helical and beta barrel transmembrane proteins. Using methods based on Bayesian Networks, a powerful approach for statistical inference, we have sought to address β-barrel topology prediction. The β-barrel topology predictor reports individual strand accuracies of 88.6%. The method outlined here represents a potentially important advance in the computational determination of membrane protein topology.
format Text
id pubmed-1891693
institution National Center for Biotechnology Information
language English
publishDate 2006
publisher Biomedical Informatics Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-18916932007-06-27 Beta barrel trans-membrane proteins: Enhanced prediction using a Bayesian approach Taylor, Paul D Toseland, Christopher P Attwood, Teresa K Flower, Darren R Bioinformation Prediction Model Membrane proteins, which constitute approximately 20% of most genomes, form two main classes: alpha helical and beta barrel transmembrane proteins. Using methods based on Bayesian Networks, a powerful approach for statistical inference, we have sought to address β-barrel topology prediction. The β-barrel topology predictor reports individual strand accuracies of 88.6%. The method outlined here represents a potentially important advance in the computational determination of membrane protein topology. Biomedical Informatics Publishing Group 2006-10-07 /pmc/articles/PMC1891693/ /pubmed/17597895 Text en © 2005 Biomedical Informatics Publishing Group This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original author and source are credited.
spellingShingle Prediction Model
Taylor, Paul D
Toseland, Christopher P
Attwood, Teresa K
Flower, Darren R
Beta barrel trans-membrane proteins: Enhanced prediction using a Bayesian approach
title Beta barrel trans-membrane proteins: Enhanced prediction using a Bayesian approach
title_full Beta barrel trans-membrane proteins: Enhanced prediction using a Bayesian approach
title_fullStr Beta barrel trans-membrane proteins: Enhanced prediction using a Bayesian approach
title_full_unstemmed Beta barrel trans-membrane proteins: Enhanced prediction using a Bayesian approach
title_short Beta barrel trans-membrane proteins: Enhanced prediction using a Bayesian approach
title_sort beta barrel trans-membrane proteins: enhanced prediction using a bayesian approach
topic Prediction Model
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1891693/
https://www.ncbi.nlm.nih.gov/pubmed/17597895
work_keys_str_mv AT taylorpauld betabarreltransmembraneproteinsenhancedpredictionusingabayesianapproach
AT toselandchristopherp betabarreltransmembraneproteinsenhancedpredictionusingabayesianapproach
AT attwoodteresak betabarreltransmembraneproteinsenhancedpredictionusingabayesianapproach
AT flowerdarrenr betabarreltransmembraneproteinsenhancedpredictionusingabayesianapproach