Cargando…
Beta barrel trans-membrane proteins: Enhanced prediction using a Bayesian approach
Membrane proteins, which constitute approximately 20% of most genomes, form two main classes: alpha helical and beta barrel transmembrane proteins. Using methods based on Bayesian Networks, a powerful approach for statistical inference, we have sought to address β-barrel topology prediction. The β-b...
Autores principales: | Taylor, Paul D, Toseland, Christopher P, Attwood, Teresa K, Flower, Darren R |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics Publishing Group
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1891693/ https://www.ncbi.nlm.nih.gov/pubmed/17597895 |
Ejemplares similares
-
Alpha helical trans-membrane proteins: Enhanced prediction using a Bayesian approach
por: Taylor, Paul D, et al.
Publicado: (2006) -
A predictor of membrane class: Discriminating α-helical and β-barrel membrane proteins
from non-membranous proteins
por: Taylor, Paul D, et al.
Publicado: (2006) -
TATPred: a Bayesian method for the identification of twin arginine translocation pathway signal sequences
por: Taylor, Paul D, et al.
Publicado: (2006) -
Multi-class subcellular location prediction for bacterial proteins
por: Taylor, Paul D, et al.
Publicado: (2006) -
Combining algorithms to predict bacterial protein sub-cellular location: Parallel versus concurrent implementations
por: Taylor, Paul D, et al.
Publicado: (2006)