Cargando…
Improved functional prediction of proteins by learning kernel combinations in multilabel settings
BACKGROUND: We develop a probabilistic model for combining kernel matrices to predict the function of proteins. It extends previous approaches in that it can handle multiple labels which naturally appear in the context of protein function. RESULTS: Explicit modeling of multilabels significantly impr...
Autores principales: | Roth, Volker, Fischer, Bernd |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1892070/ https://www.ncbi.nlm.nih.gov/pubmed/17493250 http://dx.doi.org/10.1186/1471-2105-8-S2-S12 |
Ejemplares similares
-
Multi-Instance Multilabel Learning with Weak-Label for Predicting Protein Function in Electricigens
por: Wu, Jian-Sheng, et al.
Publicado: (2015) -
Prescription Function Prediction Using Topic Model and Multilabel Classifiers
por: Wang, Lidong, et al.
Publicado: (2017) -
An Ensemble Multilabel Classification for Disease Risk Prediction
por: Li, Runzhi, et al.
Publicado: (2017) -
Imbalanced classification for protein subcellular localization with multilabel oversampling
por: Rana, Priyanka, et al.
Publicado: (2022) -
Combining Kernel and Model Based Learning for HIV Therapy Selection
por: Parbhoo, Sonali, et al.
Publicado: (2017)