Cargando…
Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process
BACKGROUND: Causal networks based on the vector autoregressive (VAR) process are a promising statistical tool for modeling regulatory interactions in a cell. However, learning these networks is challenging due to the low sample size and high dimensionality of genomic data. RESULTS: We present a nove...
Autores principales: | Opgen-Rhein, Rainer, Strimmer, Korbinian |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1892072/ https://www.ncbi.nlm.nih.gov/pubmed/17493252 http://dx.doi.org/10.1186/1471-2105-8-S2-S3 |
Ejemplares similares
-
From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data
por: Opgen-Rhein, Rainer, et al.
Publicado: (2007) -
Inference of demographic history from genealogical trees using reversible jump Markov chain Monte Carlo
por: Opgen-Rhein, Rainer, et al.
Publicado: (2005) -
Model reduction methods for vector autoregressive processes
por: Brüggemann, Ralf
Publicado: (2004) -
A high throughput generative vector autoregression model for stochastic synapses
por: Hennen, Tyler, et al.
Publicado: (2022) -
Multivariate Autoregressive Modeling and Granger Causality Analysis of Multiple Spike Trains
por: Krumin, Michael, et al.
Publicado: (2010)