Cargando…
Validating module network learning algorithms using simulated data
BACKGROUND: In recent years, several authors have used probabilistic graphical models to learn expression modules and their regulatory programs from gene expression data. Despite the demonstrated success of such algorithms in uncovering biologically relevant regulatory relations, further development...
Autores principales: | Michoel, Tom, Maere, Steven, Bonnet, Eric, Joshi, Anagha, Saeys, Yvan, Van den Bulcke, Tim, Van Leemput, Koenraad, van Remortel, Piet, Kuiper, Martin, Marchal, Kathleen, Van de Peer, Yves |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1892074/ https://www.ncbi.nlm.nih.gov/pubmed/17493254 http://dx.doi.org/10.1186/1471-2105-8-S2-S5 |
Ejemplares similares
-
SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms
por: Van den Bulcke, Tim, et al.
Publicado: (2006) -
Module Network Inference from a Cancer Gene Expression Data Set Identifies MicroRNA Regulated Modules
por: Bonnet, Eric, et al.
Publicado: (2010) -
Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks
por: Michoel, Tom, et al.
Publicado: (2009) -
Structural and functional organization of RNA regulons in the post-transcriptional regulatory network of yeast
por: Joshi, Anagha, et al.
Publicado: (2011) -
Characterizing regulatory path motifs in integrated networks using perturbational data
por: Joshi, Anagha, et al.
Publicado: (2010)