Cargando…
Robust imputation method for missing values in microarray data
BACKGROUND: When analyzing microarray gene expression data, missing values are often encountered. Most multivariate statistical methods proposed for microarray data analysis cannot be applied when the data have missing values. Numerous imputation algorithms have been proposed to estimate the missing...
Autores principales: | Yoon, Dankyu, Lee, Eun-Kyung, Park, Taesung |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1892075/ https://www.ncbi.nlm.nih.gov/pubmed/17493255 http://dx.doi.org/10.1186/1471-2105-8-S2-S6 |
Ejemplares similares
-
Shrinkage regression-based methods for microarray missing value imputation
por: Wang, Hsiuying, et al.
Publicado: (2013) -
An efficient ensemble method for missing value imputation in microarray gene expression data
por: Zhu, Xinshan, et al.
Publicado: (2021) -
Missing value imputation improves clustering and interpretation of gene expression microarray data
por: Tuikkala, Johannes, et al.
Publicado: (2008) -
Improving missing value imputation of microarray data by using spot quality weights
por: Johansson, Peter, et al.
Publicado: (2006) -
A hybrid imputation approach for microarray missing value estimation
por: Li, Huihui, et al.
Publicado: (2015)