Cargando…
SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition
BACKGROUND: Predicting a protein's structural class from its amino acid sequence is a fundamental problem in computational biology. Much recent work has focused on developing new representations for protein sequences, called string kernels, for use with support vector machine (SVM) classifiers....
Autores principales: | Melvin, Iain, Ie, Eugene, Kuang, Rui, Weston, Jason, Stafford, William Noble, Leslie, Christina |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1892081/ https://www.ncbi.nlm.nih.gov/pubmed/17570145 http://dx.doi.org/10.1186/1471-2105-8-S4-S2 |
Ejemplares similares
-
Improving protein fold recognition by random forest
por: Jo, Taeho, et al.
Publicado: (2014) -
Protein Ranking by Semi-Supervised Network Propagation
por: Weston, Jason, et al.
Publicado: (2006) -
SVM clustering
por: Winters-Hilt, Stephen, et al.
Publicado: (2007) -
Protein folding in HP model on hexagonal lattices with diagonals
por: Shaw, Dipan Lal, et al.
Publicado: (2014) -
Planning combinatorial disulfide cross-links for protein fold determination
por: Xiong, Fei, et al.
Publicado: (2011)