Cargando…
Bayesian approaches to reverse engineer cellular systems: a simulation study on nonlinear Gaussian networks
BACKGROUND: Reverse engineering cellular networks is currently one of the most challenging problems in systems biology. Dynamic Bayesian networks (DBNs) seem to be particularly suitable for inferring relationships between cellular variables from the analysis of time series measurements of mRNA or pr...
Autores principales: | Ferrazzi, Fulvia, Sebastiani, Paola, Ramoni, Marco F, Bellazzi, Riccardo |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1892090/ https://www.ncbi.nlm.nih.gov/pubmed/17570861 http://dx.doi.org/10.1186/1471-2105-8-S5-S2 |
Ejemplares similares
-
Phenotype forecasting with SNPs data through gene-based Bayesian networks
por: Malovini, Alberto, et al.
Publicado: (2009) -
Nonlinear Bayesian Estimation of BOLD Signal under Non-Gaussian Noise
por: Khan, Ali Fahim, et al.
Publicado: (2015) -
Variational Bayesian Inference for Nonlinear Hawkes Process with Gaussian Process Self-Effects
por: Malem-Shinitski, Noa, et al.
Publicado: (2022) -
Grammatical Immune System Evolution for Reverse Engineering Nonlinear Dynamic Bayesian Models
por: McKinney, B.A., et al.
Publicado: (2008) -
TGFβ1-Induced Baf60c Regulates both Smooth Muscle Cell Commitment and Quiescence
por: Sohni, Abhishek, et al.
Publicado: (2012)