Cargando…
Altered collecting duct adenylyl cyclase content in collecting duct endothelin-1 knockout mice
BACKGROUND: Endothelin-1 (ET-1) inhibition of vasopressin (AVP)-stimulated water reabsorption by the inner medullary collecting duct (IMCD) is associated with reduced cAMP accumulation. To determine the effect of ET-1 deficiency, AVP-stimulated cAMP responsiveness was assessed in IMCD from mice with...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1894628/ https://www.ncbi.nlm.nih.gov/pubmed/17521429 http://dx.doi.org/10.1186/1471-2369-8-8 |
Sumario: | BACKGROUND: Endothelin-1 (ET-1) inhibition of vasopressin (AVP)-stimulated water reabsorption by the inner medullary collecting duct (IMCD) is associated with reduced cAMP accumulation. To determine the effect of ET-1 deficiency, AVP-stimulated cAMP responsiveness was assessed in IMCD from mice with collecting duct-specific deletion of ET-1 (CD ET-1 KO) and from control animals. METHODS: Cyclic AMP production, adenylyl cyclase (AC) mRNA, and AC protein were measured in acutely isolated IMCD. RESULTS: CD ET-1 KO IMCD had enhanced AVP-stimulated cAMP accumulation. Inhibition of calcium-stimulated AC using BAPTA did not prevent enhanced AVP responsiveness in CD ET-1 KO IMCD. Factors known to be modified by ET-1, including nitric oxide, cyclooxygenase metabolites, and superoxide did not affect the increased AVP responsiveness of CD ET-1 KO IMCD. Differential V2 receptor or G-protein activity was not involved since CD ET-1 KO IMCD had increased cAMP accumulation in response to forskolin and/or cholera toxin. CD ET-1 KO did not affect mRNA or protein levels of AC3, one of the major known collecting duct AC isoforms. However, the other known major collecting duct AC isoform (AC5/6) did have increased protein levels in CD ET-1 KO IMCD, although AC5 (weak signal) and 6 mRNA levels were unchanged. CONCLUSION: ET-1 deficiency increases IMCD AC5/6 content, an effect that may synergize with acute ET-1 inhibition of AVP-stimulated cAMP accumulation. |
---|