Cargando…
An adaptive alpha spending algorithm improves the power of statistical inference in microarray data analysis
The adaptive alpha-spending algorithm incorporates additional contextual evidence (including correlations among genes) about differential expression to adjust the initial p-values to yield the alpha-spending adjusted p-values. The alpha-spending algorithm is named so because of its similarity with t...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics Publishing Group
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1896052/ https://www.ncbi.nlm.nih.gov/pubmed/17597927 |
_version_ | 1782133913211109376 |
---|---|
author | Brand, Jacob P L Chen, Lang Cui, Xiangqin Bartolucci, Alfred A Page, Grier P Kim, Kyoungmi Barnes, Stephen Srinivasasainagendra, Vinodh Beasley, Mark T Allison, David B |
author_facet | Brand, Jacob P L Chen, Lang Cui, Xiangqin Bartolucci, Alfred A Page, Grier P Kim, Kyoungmi Barnes, Stephen Srinivasasainagendra, Vinodh Beasley, Mark T Allison, David B |
author_sort | Brand, Jacob P L |
collection | PubMed |
description | The adaptive alpha-spending algorithm incorporates additional contextual evidence (including correlations among genes) about differential expression to adjust the initial p-values to yield the alpha-spending adjusted p-values. The alpha-spending algorithm is named so because of its similarity with the alpha-spending algorithm in interim analysis of clinical trials in which stage-specific significance levels are assigned to each stage of the clinical trial. We show that the Bonferroni correction applied to the alpha-spending adjusted p-values approximately controls the Family Wise Error Rate under the complete null hypothesis. Using simulations we also show that the use of the alpha spending algorithm yields increased power over the unadjusted p-values while controlling FDR. We found the greater benefits of the alpha spending algorithm with increasing sample sizes and correlation among genes. The use of the alpha spending algorithm will result in microarray experiments that make more efficient use of their data and may help conserve resources. |
format | Text |
id | pubmed-1896052 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | Biomedical Informatics Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-18960522007-06-27 An adaptive alpha spending algorithm improves the power of statistical inference in microarray data analysis Brand, Jacob P L Chen, Lang Cui, Xiangqin Bartolucci, Alfred A Page, Grier P Kim, Kyoungmi Barnes, Stephen Srinivasasainagendra, Vinodh Beasley, Mark T Allison, David B Bioinformation Prediction Model The adaptive alpha-spending algorithm incorporates additional contextual evidence (including correlations among genes) about differential expression to adjust the initial p-values to yield the alpha-spending adjusted p-values. The alpha-spending algorithm is named so because of its similarity with the alpha-spending algorithm in interim analysis of clinical trials in which stage-specific significance levels are assigned to each stage of the clinical trial. We show that the Bonferroni correction applied to the alpha-spending adjusted p-values approximately controls the Family Wise Error Rate under the complete null hypothesis. Using simulations we also show that the use of the alpha spending algorithm yields increased power over the unadjusted p-values while controlling FDR. We found the greater benefits of the alpha spending algorithm with increasing sample sizes and correlation among genes. The use of the alpha spending algorithm will result in microarray experiments that make more efficient use of their data and may help conserve resources. Biomedical Informatics Publishing Group 2007-04-10 /pmc/articles/PMC1896052/ /pubmed/17597927 Text en © 2006 Biomedical Informatics Publishing Group This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original author and source are credited. |
spellingShingle | Prediction Model Brand, Jacob P L Chen, Lang Cui, Xiangqin Bartolucci, Alfred A Page, Grier P Kim, Kyoungmi Barnes, Stephen Srinivasasainagendra, Vinodh Beasley, Mark T Allison, David B An adaptive alpha spending algorithm improves the power of statistical inference in microarray data analysis |
title | An adaptive alpha spending algorithm improves the power of statistical inference in microarray data analysis |
title_full | An adaptive alpha spending algorithm improves the power of statistical inference in microarray data analysis |
title_fullStr | An adaptive alpha spending algorithm improves the power of statistical inference in microarray data analysis |
title_full_unstemmed | An adaptive alpha spending algorithm improves the power of statistical inference in microarray data analysis |
title_short | An adaptive alpha spending algorithm improves the power of statistical inference in microarray data analysis |
title_sort | adaptive alpha spending algorithm improves the power of statistical inference in microarray data analysis |
topic | Prediction Model |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1896052/ https://www.ncbi.nlm.nih.gov/pubmed/17597927 |
work_keys_str_mv | AT brandjacobpl anadaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis AT chenlang anadaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis AT cuixiangqin anadaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis AT bartoluccialfreda anadaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis AT pagegrierp anadaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis AT kimkyoungmi anadaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis AT barnesstephen anadaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis AT srinivasasainagendravinodh anadaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis AT beasleymarkt anadaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis AT allisondavidb anadaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis AT brandjacobpl adaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis AT chenlang adaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis AT cuixiangqin adaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis AT bartoluccialfreda adaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis AT pagegrierp adaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis AT kimkyoungmi adaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis AT barnesstephen adaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis AT srinivasasainagendravinodh adaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis AT beasleymarkt adaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis AT allisondavidb adaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis |