Cargando…

An adaptive alpha spending algorithm improves the power of statistical inference in microarray data analysis

The adaptive alpha-spending algorithm incorporates additional contextual evidence (including correlations among genes) about differential expression to adjust the initial p-values to yield the alpha-spending adjusted p-values. The alpha-spending algorithm is named so because of its similarity with t...

Descripción completa

Detalles Bibliográficos
Autores principales: Brand, Jacob P L, Chen, Lang, Cui, Xiangqin, Bartolucci, Alfred A, Page, Grier P, Kim, Kyoungmi, Barnes, Stephen, Srinivasasainagendra, Vinodh, Beasley, Mark T, Allison, David B
Formato: Texto
Lenguaje:English
Publicado: Biomedical Informatics Publishing Group 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1896052/
https://www.ncbi.nlm.nih.gov/pubmed/17597927
_version_ 1782133913211109376
author Brand, Jacob P L
Chen, Lang
Cui, Xiangqin
Bartolucci, Alfred A
Page, Grier P
Kim, Kyoungmi
Barnes, Stephen
Srinivasasainagendra, Vinodh
Beasley, Mark T
Allison, David B
author_facet Brand, Jacob P L
Chen, Lang
Cui, Xiangqin
Bartolucci, Alfred A
Page, Grier P
Kim, Kyoungmi
Barnes, Stephen
Srinivasasainagendra, Vinodh
Beasley, Mark T
Allison, David B
author_sort Brand, Jacob P L
collection PubMed
description The adaptive alpha-spending algorithm incorporates additional contextual evidence (including correlations among genes) about differential expression to adjust the initial p-values to yield the alpha-spending adjusted p-values. The alpha-spending algorithm is named so because of its similarity with the alpha-spending algorithm in interim analysis of clinical trials in which stage-specific significance levels are assigned to each stage of the clinical trial. We show that the Bonferroni correction applied to the alpha-spending adjusted p-values approximately controls the Family Wise Error Rate under the complete null hypothesis. Using simulations we also show that the use of the alpha spending algorithm yields increased power over the unadjusted p-values while controlling FDR. We found the greater benefits of the alpha spending algorithm with increasing sample sizes and correlation among genes. The use of the alpha spending algorithm will result in microarray experiments that make more efficient use of their data and may help conserve resources.
format Text
id pubmed-1896052
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher Biomedical Informatics Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-18960522007-06-27 An adaptive alpha spending algorithm improves the power of statistical inference in microarray data analysis Brand, Jacob P L Chen, Lang Cui, Xiangqin Bartolucci, Alfred A Page, Grier P Kim, Kyoungmi Barnes, Stephen Srinivasasainagendra, Vinodh Beasley, Mark T Allison, David B Bioinformation Prediction Model The adaptive alpha-spending algorithm incorporates additional contextual evidence (including correlations among genes) about differential expression to adjust the initial p-values to yield the alpha-spending adjusted p-values. The alpha-spending algorithm is named so because of its similarity with the alpha-spending algorithm in interim analysis of clinical trials in which stage-specific significance levels are assigned to each stage of the clinical trial. We show that the Bonferroni correction applied to the alpha-spending adjusted p-values approximately controls the Family Wise Error Rate under the complete null hypothesis. Using simulations we also show that the use of the alpha spending algorithm yields increased power over the unadjusted p-values while controlling FDR. We found the greater benefits of the alpha spending algorithm with increasing sample sizes and correlation among genes. The use of the alpha spending algorithm will result in microarray experiments that make more efficient use of their data and may help conserve resources. Biomedical Informatics Publishing Group 2007-04-10 /pmc/articles/PMC1896052/ /pubmed/17597927 Text en © 2006 Biomedical Informatics Publishing Group This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original author and source are credited.
spellingShingle Prediction Model
Brand, Jacob P L
Chen, Lang
Cui, Xiangqin
Bartolucci, Alfred A
Page, Grier P
Kim, Kyoungmi
Barnes, Stephen
Srinivasasainagendra, Vinodh
Beasley, Mark T
Allison, David B
An adaptive alpha spending algorithm improves the power of statistical inference in microarray data analysis
title An adaptive alpha spending algorithm improves the power of statistical inference in microarray data analysis
title_full An adaptive alpha spending algorithm improves the power of statistical inference in microarray data analysis
title_fullStr An adaptive alpha spending algorithm improves the power of statistical inference in microarray data analysis
title_full_unstemmed An adaptive alpha spending algorithm improves the power of statistical inference in microarray data analysis
title_short An adaptive alpha spending algorithm improves the power of statistical inference in microarray data analysis
title_sort adaptive alpha spending algorithm improves the power of statistical inference in microarray data analysis
topic Prediction Model
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1896052/
https://www.ncbi.nlm.nih.gov/pubmed/17597927
work_keys_str_mv AT brandjacobpl anadaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis
AT chenlang anadaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis
AT cuixiangqin anadaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis
AT bartoluccialfreda anadaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis
AT pagegrierp anadaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis
AT kimkyoungmi anadaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis
AT barnesstephen anadaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis
AT srinivasasainagendravinodh anadaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis
AT beasleymarkt anadaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis
AT allisondavidb anadaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis
AT brandjacobpl adaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis
AT chenlang adaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis
AT cuixiangqin adaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis
AT bartoluccialfreda adaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis
AT pagegrierp adaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis
AT kimkyoungmi adaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis
AT barnesstephen adaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis
AT srinivasasainagendravinodh adaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis
AT beasleymarkt adaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis
AT allisondavidb adaptivealphaspendingalgorithmimprovesthepowerofstatisticalinferenceinmicroarraydataanalysis