Cargando…
Incorporation of biological knowledge into distance for clustering genes
In this paper we propose a data based algorithm to marry existing biological knowledge (e.g., functional annotations of genes) with experimental data (gene expression profiles) in creating an overall dissimilarity that can be used with any clustering algorithm that uses a general dissimilarity matri...
Autores principales: | Boratyn, Grzegorz M, Datta, Susmita, Datta, Somnath |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics Publishing Group
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1896054/ https://www.ncbi.nlm.nih.gov/pubmed/17597929 |
Ejemplares similares
-
Meta analysis of Chronic Fatigue Syndrome through integration of clinical, gene expression, SNP and proteomic data
por: Pihur, Vasyl, et al.
Publicado: (2011) -
Iterative local Gaussian clustering for expressed genes identification linked to malignancy of human colorectal carcinoma
por: Wasito, Ito, et al.
Publicado: (2007) -
Robust consensus clustering for identification of expressed genes linked to malignancy of human colorectal carcinoma
por: Wahyudi, Gatot, et al.
Publicado: (2011) -
A method for clustering of miRNA sequences using fragmented programming
por: Ivashchenko, Anatoly, et al.
Publicado: (2016) -
Leaving out control groups: an internal contrast analysis of gene
expression profiles in atrial fibrillation patients ‐ A systems
biology approach to clinical categorization
por: Vanhoutte, Kurt, et al.
Publicado: (2009)