Cargando…

Indole is an inter-species biofilm signal mediated by SdiA

BACKGROUND: As a stationary phase signal, indole is secreted in large quantities into rich medium by Escherichia coli and has been shown to control several genes (e.g., astD, tnaB, gabT), multi-drug exporters, and the pathogenicity island of E. coli; however, its impact on biofilm formation has not...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Jintae, Jayaraman, Arul, Wood, Thomas K
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1899176/
https://www.ncbi.nlm.nih.gov/pubmed/17511876
http://dx.doi.org/10.1186/1471-2180-7-42
_version_ 1782133934831697920
author Lee, Jintae
Jayaraman, Arul
Wood, Thomas K
author_facet Lee, Jintae
Jayaraman, Arul
Wood, Thomas K
author_sort Lee, Jintae
collection PubMed
description BACKGROUND: As a stationary phase signal, indole is secreted in large quantities into rich medium by Escherichia coli and has been shown to control several genes (e.g., astD, tnaB, gabT), multi-drug exporters, and the pathogenicity island of E. coli; however, its impact on biofilm formation has not been well-studied. RESULTS: Through a series of global transcriptome analyses, confocal microscopy, isogenic mutants, and dual-species biofilms, we show here that indole is a non-toxic signal that controls E. coli biofilms by repressing motility, inducing the sensor of the quorum sensing signal autoinducer-1 (SdiA), and influencing acid resistance (e.g., hdeABD, gadABCEX). Isogenic mutants showed these associated proteins are directly related to biofilm formation (e.g., the sdiA mutation increased biofilm formation 50-fold), and SdiA-mediated transcription was shown to be influenced by indole. The reduction in motility due to indole addition results in the biofilm architecture changing from scattered towers to flat colonies. Additionally, there are 12-fold more E. coli cells in dual-species biofilms grown in the presence of Pseudomonas cells engineered to express toluene o-monooxygenase (TOM, which converts indole to an insoluble indigoid) than in biofilms with pseudomonads that do not express TOM due to a 22-fold reduction in extracellular indole. Also, indole stimulates biofilm formation in pseudomonads. Further evidence that the indole effects are mediated by SdiA and homoserine lactone quorum sensing is that the addition of N-butyryl-, N-hexanoyl-, and N-octanoyl-L-homoserine lactones repress E. coli biofilm formation in the wild-type strain but not with the sdiA mutant. CONCLUSION: Indole is an interspecies signal that decreases E. coli biofilms through SdiA and increases those of pseudomonads. Indole may be manipulated to control biofilm formation by oxygenases of bacteria that do not synthesize it in a dual-species biofilm. Furthermore, E. coli changes its biofilm in response to signals it cannot synthesize (homoserine lactones), and pseudomonads respond to signals they do not synthesize (indole).
format Text
id pubmed-1899176
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-18991762007-06-26 Indole is an inter-species biofilm signal mediated by SdiA Lee, Jintae Jayaraman, Arul Wood, Thomas K BMC Microbiol Research Article BACKGROUND: As a stationary phase signal, indole is secreted in large quantities into rich medium by Escherichia coli and has been shown to control several genes (e.g., astD, tnaB, gabT), multi-drug exporters, and the pathogenicity island of E. coli; however, its impact on biofilm formation has not been well-studied. RESULTS: Through a series of global transcriptome analyses, confocal microscopy, isogenic mutants, and dual-species biofilms, we show here that indole is a non-toxic signal that controls E. coli biofilms by repressing motility, inducing the sensor of the quorum sensing signal autoinducer-1 (SdiA), and influencing acid resistance (e.g., hdeABD, gadABCEX). Isogenic mutants showed these associated proteins are directly related to biofilm formation (e.g., the sdiA mutation increased biofilm formation 50-fold), and SdiA-mediated transcription was shown to be influenced by indole. The reduction in motility due to indole addition results in the biofilm architecture changing from scattered towers to flat colonies. Additionally, there are 12-fold more E. coli cells in dual-species biofilms grown in the presence of Pseudomonas cells engineered to express toluene o-monooxygenase (TOM, which converts indole to an insoluble indigoid) than in biofilms with pseudomonads that do not express TOM due to a 22-fold reduction in extracellular indole. Also, indole stimulates biofilm formation in pseudomonads. Further evidence that the indole effects are mediated by SdiA and homoserine lactone quorum sensing is that the addition of N-butyryl-, N-hexanoyl-, and N-octanoyl-L-homoserine lactones repress E. coli biofilm formation in the wild-type strain but not with the sdiA mutant. CONCLUSION: Indole is an interspecies signal that decreases E. coli biofilms through SdiA and increases those of pseudomonads. Indole may be manipulated to control biofilm formation by oxygenases of bacteria that do not synthesize it in a dual-species biofilm. Furthermore, E. coli changes its biofilm in response to signals it cannot synthesize (homoserine lactones), and pseudomonads respond to signals they do not synthesize (indole). BioMed Central 2007-05-18 /pmc/articles/PMC1899176/ /pubmed/17511876 http://dx.doi.org/10.1186/1471-2180-7-42 Text en Copyright © 2007 Lee et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Lee, Jintae
Jayaraman, Arul
Wood, Thomas K
Indole is an inter-species biofilm signal mediated by SdiA
title Indole is an inter-species biofilm signal mediated by SdiA
title_full Indole is an inter-species biofilm signal mediated by SdiA
title_fullStr Indole is an inter-species biofilm signal mediated by SdiA
title_full_unstemmed Indole is an inter-species biofilm signal mediated by SdiA
title_short Indole is an inter-species biofilm signal mediated by SdiA
title_sort indole is an inter-species biofilm signal mediated by sdia
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1899176/
https://www.ncbi.nlm.nih.gov/pubmed/17511876
http://dx.doi.org/10.1186/1471-2180-7-42
work_keys_str_mv AT leejintae indoleisaninterspeciesbiofilmsignalmediatedbysdia
AT jayaramanarul indoleisaninterspeciesbiofilmsignalmediatedbysdia
AT woodthomask indoleisaninterspeciesbiofilmsignalmediatedbysdia