Cargando…

The Circadian System Is a Target and Modulator of Prenatal Cocaine Effects

BACKGROUND: Prenatal exposure to cocaine can be deleterious to embryonic brain development, but the results in humans remain controversial, the mechanisms involved are not well understood and effective therapies are yet to be designed. We hypothesize that some of the prenatal effects of cocaine migh...

Descripción completa

Detalles Bibliográficos
Autores principales: Shang, Eva H., Zhdanova, Irina V.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1899232/
https://www.ncbi.nlm.nih.gov/pubmed/17622340
http://dx.doi.org/10.1371/journal.pone.0000587
_version_ 1782133938675777536
author Shang, Eva H.
Zhdanova, Irina V.
author_facet Shang, Eva H.
Zhdanova, Irina V.
author_sort Shang, Eva H.
collection PubMed
description BACKGROUND: Prenatal exposure to cocaine can be deleterious to embryonic brain development, but the results in humans remain controversial, the mechanisms involved are not well understood and effective therapies are yet to be designed. We hypothesize that some of the prenatal effects of cocaine might be related to dysregulation of physiological rhythms due to alterations in the integrating circadian clock function. METHODOLOGY AND PRINCIPLE FINDINGS: Here we introduce a new high-throughput genetically well-characterized diurnal vertebrate model for studying the mechanisms of prenatal cocaine effects by demonstrating reduced viability and alterations in the pattern of neuronal development following repeated cocaine exposure in zebrafish embryos. This effect is associated with acute cocaine-induced changes in the expression of genes affecting growth (growth hormone, zGH) and neurotransmission (dopamine transporter, zDAT). Analysis of circadian gene expression, using quantitative real-time RT-PCR (QPCR), demonstrates that cocaine acutely and dose-dependently changes the expression of the circadian genes (zPer-3, zBmal-1) and genes encoding melatonin receptors (zMelR) that mediate the circadian message to the entire organism. Moreover, the effects of prenatal cocaine depend on the time of treatment, being more robust during the day, independent of whether the embryos are raised under the light-dark cycle or in constant light. The latter suggests involvement of the inherited circadian factors. The principal circadian hormone, melatonin, counteracts the effects of cocaine on neuronal development and gene expression, acting via specific melatonin receptors. CONCLUSIONS/SIGNIFICANCE: These findings demonstrate that, in a diurnal vertebrate, prenatal cocaine can acutely dysregulate the expression of circadian genes and those affecting melatonin signaling, growth and neurotransmission, while repeated cocaine exposure can alter neuronal development. Daily variation in these effects of cocaine and their attenuation by melatonin suggest a potential prophylactic or therapeutic role for circadian factors in prenatal cocaine exposure.
format Text
id pubmed-1899232
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-18992322007-07-11 The Circadian System Is a Target and Modulator of Prenatal Cocaine Effects Shang, Eva H. Zhdanova, Irina V. PLoS One Research Article BACKGROUND: Prenatal exposure to cocaine can be deleterious to embryonic brain development, but the results in humans remain controversial, the mechanisms involved are not well understood and effective therapies are yet to be designed. We hypothesize that some of the prenatal effects of cocaine might be related to dysregulation of physiological rhythms due to alterations in the integrating circadian clock function. METHODOLOGY AND PRINCIPLE FINDINGS: Here we introduce a new high-throughput genetically well-characterized diurnal vertebrate model for studying the mechanisms of prenatal cocaine effects by demonstrating reduced viability and alterations in the pattern of neuronal development following repeated cocaine exposure in zebrafish embryos. This effect is associated with acute cocaine-induced changes in the expression of genes affecting growth (growth hormone, zGH) and neurotransmission (dopamine transporter, zDAT). Analysis of circadian gene expression, using quantitative real-time RT-PCR (QPCR), demonstrates that cocaine acutely and dose-dependently changes the expression of the circadian genes (zPer-3, zBmal-1) and genes encoding melatonin receptors (zMelR) that mediate the circadian message to the entire organism. Moreover, the effects of prenatal cocaine depend on the time of treatment, being more robust during the day, independent of whether the embryos are raised under the light-dark cycle or in constant light. The latter suggests involvement of the inherited circadian factors. The principal circadian hormone, melatonin, counteracts the effects of cocaine on neuronal development and gene expression, acting via specific melatonin receptors. CONCLUSIONS/SIGNIFICANCE: These findings demonstrate that, in a diurnal vertebrate, prenatal cocaine can acutely dysregulate the expression of circadian genes and those affecting melatonin signaling, growth and neurotransmission, while repeated cocaine exposure can alter neuronal development. Daily variation in these effects of cocaine and their attenuation by melatonin suggest a potential prophylactic or therapeutic role for circadian factors in prenatal cocaine exposure. Public Library of Science 2007-07-11 /pmc/articles/PMC1899232/ /pubmed/17622340 http://dx.doi.org/10.1371/journal.pone.0000587 Text en Shang, Zhdanova. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Shang, Eva H.
Zhdanova, Irina V.
The Circadian System Is a Target and Modulator of Prenatal Cocaine Effects
title The Circadian System Is a Target and Modulator of Prenatal Cocaine Effects
title_full The Circadian System Is a Target and Modulator of Prenatal Cocaine Effects
title_fullStr The Circadian System Is a Target and Modulator of Prenatal Cocaine Effects
title_full_unstemmed The Circadian System Is a Target and Modulator of Prenatal Cocaine Effects
title_short The Circadian System Is a Target and Modulator of Prenatal Cocaine Effects
title_sort circadian system is a target and modulator of prenatal cocaine effects
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1899232/
https://www.ncbi.nlm.nih.gov/pubmed/17622340
http://dx.doi.org/10.1371/journal.pone.0000587
work_keys_str_mv AT shangevah thecircadiansystemisatargetandmodulatorofprenatalcocaineeffects
AT zhdanovairinav thecircadiansystemisatargetandmodulatorofprenatalcocaineeffects
AT shangevah circadiansystemisatargetandmodulatorofprenatalcocaineeffects
AT zhdanovairinav circadiansystemisatargetandmodulatorofprenatalcocaineeffects