Cargando…
Additive risk survival model with microarray data
BACKGROUND: Microarray techniques survey gene expressions on a global scale. Extensive biomedical studies have been designed to discover subsets of genes that are associated with survival risks for diseases such as lymphoma and construct predictive models using those selected genes. In this article,...
Autores principales: | Ma, Shuangge, Huang, Jian |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1904459/ https://www.ncbi.nlm.nih.gov/pubmed/17559667 http://dx.doi.org/10.1186/1471-2105-8-192 |
Ejemplares similares
-
Supervised group Lasso with applications to microarray data analysis
por: Ma, Shuangge, et al.
Publicado: (2007) -
Regularized binormal ROC method in disease classification using microarray data
por: Ma, Shuangge, et al.
Publicado: (2006) -
Regularized gene selection in cancer microarray meta-analysis
por: Ma, Shuangge, et al.
Publicado: (2009) -
Preprocessing differential methylation hybridization microarray data
por: Sun, Shuying, et al.
Publicado: (2011) -
Discovery of prognostic biomarkers for predicting lung cancer metastasis using microarray and survival data
por: Huang, Hui-Ling, et al.
Publicado: (2015)