Cargando…
Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring
BACKGROUND: The rapid and accurate identification of species is a critical component of large-scale biodiversity monitoring programs. DNA arrays (micro and macro) and DNA barcodes are two molecular approaches that have recently garnered much attention. Here, we compare these two platforms for identi...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1906742/ https://www.ncbi.nlm.nih.gov/pubmed/17567898 http://dx.doi.org/10.1186/1741-7007-5-24 |
_version_ | 1782134016550371328 |
---|---|
author | Hajibabaei, Mehrdad Singer, Gregory AC Clare, Elizabeth L Hebert, Paul DN |
author_facet | Hajibabaei, Mehrdad Singer, Gregory AC Clare, Elizabeth L Hebert, Paul DN |
author_sort | Hajibabaei, Mehrdad |
collection | PubMed |
description | BACKGROUND: The rapid and accurate identification of species is a critical component of large-scale biodiversity monitoring programs. DNA arrays (micro and macro) and DNA barcodes are two molecular approaches that have recently garnered much attention. Here, we compare these two platforms for identification of an important group, the mammals. RESULTS: Our analyses, based on the two commonly used mitochondrial genes cytochrome c oxidase I (the standard DNA barcode for animal species) and cytochrome b (a common species-level marker), suggest that both arrays and barcodes are capable of discriminating mammalian species with high accuracy. We used three different datasets of mammalian species, comprising different sampling strategies. For DNA arrays we designed three probes for each species to address intraspecific variation. As for DNA barcoding, our analyses show that both cytochrome c oxidase I and cytochrome b genes, and even smaller fragments of them (mini-barcodes) can successfully discriminate species in a wide variety of specimens. CONCLUSION: This study showed that DNA arrays and DNA barcodes are valuable molecular methods for biodiversity monitoring programs. Both approaches were capable of discriminating among mammalian species in our test assemblages. However, because designing DNA arrays require advance knowledge of target sequences, the use of this approach could be limited in large scale monitoring programs where unknown haplotypes might be encountered. DNA barcodes, by contrast, are sequencing-based and therefore could provide more flexibility in large-scale studies. |
format | Text |
id | pubmed-1906742 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-19067422007-07-04 Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring Hajibabaei, Mehrdad Singer, Gregory AC Clare, Elizabeth L Hebert, Paul DN BMC Biol Research Article BACKGROUND: The rapid and accurate identification of species is a critical component of large-scale biodiversity monitoring programs. DNA arrays (micro and macro) and DNA barcodes are two molecular approaches that have recently garnered much attention. Here, we compare these two platforms for identification of an important group, the mammals. RESULTS: Our analyses, based on the two commonly used mitochondrial genes cytochrome c oxidase I (the standard DNA barcode for animal species) and cytochrome b (a common species-level marker), suggest that both arrays and barcodes are capable of discriminating mammalian species with high accuracy. We used three different datasets of mammalian species, comprising different sampling strategies. For DNA arrays we designed three probes for each species to address intraspecific variation. As for DNA barcoding, our analyses show that both cytochrome c oxidase I and cytochrome b genes, and even smaller fragments of them (mini-barcodes) can successfully discriminate species in a wide variety of specimens. CONCLUSION: This study showed that DNA arrays and DNA barcodes are valuable molecular methods for biodiversity monitoring programs. Both approaches were capable of discriminating among mammalian species in our test assemblages. However, because designing DNA arrays require advance knowledge of target sequences, the use of this approach could be limited in large scale monitoring programs where unknown haplotypes might be encountered. DNA barcodes, by contrast, are sequencing-based and therefore could provide more flexibility in large-scale studies. BioMed Central 2007-06-13 /pmc/articles/PMC1906742/ /pubmed/17567898 http://dx.doi.org/10.1186/1741-7007-5-24 Text en Copyright © 2007 Hajibabaei et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Hajibabaei, Mehrdad Singer, Gregory AC Clare, Elizabeth L Hebert, Paul DN Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring |
title | Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring |
title_full | Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring |
title_fullStr | Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring |
title_full_unstemmed | Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring |
title_short | Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring |
title_sort | design and applicability of dna arrays and dna barcodes in biodiversity monitoring |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1906742/ https://www.ncbi.nlm.nih.gov/pubmed/17567898 http://dx.doi.org/10.1186/1741-7007-5-24 |
work_keys_str_mv | AT hajibabaeimehrdad designandapplicabilityofdnaarraysanddnabarcodesinbiodiversitymonitoring AT singergregoryac designandapplicabilityofdnaarraysanddnabarcodesinbiodiversitymonitoring AT clareelizabethl designandapplicabilityofdnaarraysanddnabarcodesinbiodiversitymonitoring AT hebertpauldn designandapplicabilityofdnaarraysanddnabarcodesinbiodiversitymonitoring |