Cargando…
Improving model predictions for RNA interference activities that use support vector machine regression by combining and filtering features
BACKGROUND: RNA interference (RNAi) is a naturally occurring phenomenon that results in the suppression of a target RNA sequence utilizing a variety of possible methods and pathways. To dissect the factors that result in effective siRNA sequences a regression kernel Support Vector Machine (SVM) appr...
Autor principal: | Peek, Andrew S |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1906837/ https://www.ncbi.nlm.nih.gov/pubmed/17553157 http://dx.doi.org/10.1186/1471-2105-8-182 |
Ejemplares similares
-
Prediction of Human Intestinal Absorption by GA Feature Selection and Support Vector Machine Regression
por: Yan, Aixia, et al.
Publicado: (2008) -
Optimization of dewatering process of concentrate pressure filtering by support vector regression
por: Liu, Huizhong, et al.
Publicado: (2022) -
Research on Location Algorithm Based on Beacon Filtering Combining DV-Hop and Multidimensional Support Vector Regression
por: Zhang, Dejing, et al.
Publicado: (2021) -
Support Vector Machine Classification and Regression
Prioritize Different Structural Features for Binary Compound Activity
and Potency Value Prediction
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2017) -
Predicting and improving the protein sequence alignment quality by support vector regression
por: Lee, Minho, et al.
Publicado: (2007)