Cargando…
Power for tests of interaction: effect of raising the Type I error rate
BACKGROUND: Power for assessing interactions during data analysis is often poor in epidemiologic studies. This is because epidemiologic studies are frequently powered primarily to assess main effects only. In light of this, some investigators raise the Type I error rate, thereby increasing power, wh...
Autor principal: | Marshall, Stephen W |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1910596/ https://www.ncbi.nlm.nih.gov/pubmed/17578572 http://dx.doi.org/10.1186/1742-5573-4-4 |
Ejemplares similares
-
Impact of genotyping errors on the type I error rate and the power of haplotype-based association methods
por: Marquard, Vivien, et al.
Publicado: (2009) -
Spatial heterogeneity of type I error for local cluster detection tests
por: Guttmann, Aline, et al.
Publicado: (2014) -
Type I Error Control for Tree Classification
por: Jung, Sin-Ho, et al.
Publicado: (2014) -
Type I error rates of multi-arm multi-stage clinical trials: strong control and impact of intermediate outcomes
por: Bratton, Daniel J., et al.
Publicado: (2016) -
Does Raising Type 1 Error Rate Improve Power to Detect Interactions in Linear Regression Models? A Simulation Study
por: Durand, Casey P.
Publicado: (2013)