Cargando…
The construction of a Solanum habrochaites LYC4 introgression line population and the identification of QTLs for resistance to Botrytis cinerea
Tomato (Solanum lycopersicum) is susceptible to grey mold (Botrytis cinerea). Partial resistance to this fungus has been identified in accessions of wild relatives of tomato such as Solanum habrochaites LYC4. In a previous F(2) mapping study, three QTLs conferring resistance to B. cinerea (Rbcq1, Rb...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1913174/ https://www.ncbi.nlm.nih.gov/pubmed/17273845 http://dx.doi.org/10.1007/s00122-006-0500-2 |
Sumario: | Tomato (Solanum lycopersicum) is susceptible to grey mold (Botrytis cinerea). Partial resistance to this fungus has been identified in accessions of wild relatives of tomato such as Solanum habrochaites LYC4. In a previous F(2) mapping study, three QTLs conferring resistance to B. cinerea (Rbcq1, Rbcq2 and Rbcq4a) were identified. As it was probable that this study had not identified all QTLs involved in resistance we developed an introgression line (IL) population (n = 30), each containing a S. habrochaites introgression in the S. lycopersicum cv. Moneymaker genetic background. On average each IL contained 5.2% of the S. habrochaites genome and together the lines provide an estimated coverage of 95%. The level of susceptibility to B. cinerea for each of the ILs was assessed in a greenhouse trial and compared to the susceptible parent S. lycopersicum cv. Moneymaker. The effect of the three previously identified loci could be confirmed and seven additional loci were detected. Some ILs contains multiple QTLs and the increased resistance to B. cinerea in these ILs is in line with a completely additive model. We conclude that this set of QTLs offers good perspectives for breeding of B. cinerea resistant cultivars and that screening an IL population is more sensitive for detection of QTLs conferring resistance to B. cinerea than the analysis in an F(2) population. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00122-006-0500-2) contains supplementary material, which is available to authorized users. |
---|