Cargando…

Load-dependent release limits the processive stepping of the tetrameric Eg5 motor

Tetrameric motor proteins of the Kinesin-5 family are essential for eukaryotic cell division. The microscopic mechanism by which Eg5, the vertebrate Kinesin-5, drives bipolar mitotic spindle formation remains unknown. Here we show in optical trapping experiments that full-length Eg5 moves processive...

Descripción completa

Detalles Bibliográficos
Autores principales: Korneev, Mikhail J., Lakämper, Stefan, Schmidt, Christoph F.
Formato: Texto
Lenguaje:English
Publicado: Springer-Verlag 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914257/
https://www.ncbi.nlm.nih.gov/pubmed/17333163
http://dx.doi.org/10.1007/s00249-007-0134-6
Descripción
Sumario:Tetrameric motor proteins of the Kinesin-5 family are essential for eukaryotic cell division. The microscopic mechanism by which Eg5, the vertebrate Kinesin-5, drives bipolar mitotic spindle formation remains unknown. Here we show in optical trapping experiments that full-length Eg5 moves processively and stepwise along microtubule bundles. Interestingly, the force produced by individual Eg5 motors typically reached only ∼2 pN, one-third of the stall force of Kinesin-1. Eg5 typically detached from microtubules before stalling. This behavior may reflect a regulatory mechanism important for the role of Eg5 in the mitotic spindle.