Cargando…
A gene transcription signature associated with hormone independence in a subset of both breast and prostate cancers
BACKGROUND: The development of resistance to hormone therapy in both breast and prostate cancers is attributed to tens of thousands of patient deaths every year. RESULTS: From analyses of global gene expression profile data, a nonrandom amount of overlap was observed between the set of genes associa...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914359/ https://www.ncbi.nlm.nih.gov/pubmed/17598908 http://dx.doi.org/10.1186/1471-2164-8-199 |
_version_ | 1782134132276461568 |
---|---|
author | Creighton, Chad J |
author_facet | Creighton, Chad J |
author_sort | Creighton, Chad J |
collection | PubMed |
description | BACKGROUND: The development of resistance to hormone therapy in both breast and prostate cancers is attributed to tens of thousands of patient deaths every year. RESULTS: From analyses of global gene expression profile data, a nonrandom amount of overlap was observed between the set of genes associated with estrogen receptor negative (ER-), hormone independent breast cancer and the set of genes associated with androgen independent (AI) prostate cancer. A set of 81 genes was identified that were differentially expressed between ER- and ER+ clinical breast tumors and breast cancer cell lines and that showed concordant expression in AI versus AS (androgen sensitive) prostate cell lines. This common gene signature of hormone independence was used to identify a subset of clinically localized primary prostate tumors that shared extensive similarities in gene transcription with both ER- breast and AI prostate cell lines and that tended to show concurrent deactivation of the androgen signaling pathway. Both ER- breast and AI prostate cell lines were significantly enriched for transcriptional targets of signaling via epidermal growth factor receptor (EGFR). CONCLUSION: This study indicates that the growth- and survival-promoting functions of hormone receptors can be bypassed in a subset of both breast and prostate cancers by the same growth factor signaling pathways, which holds implications for the use of targeted therapy regimens. |
format | Text |
id | pubmed-1914359 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-19143592007-07-13 A gene transcription signature associated with hormone independence in a subset of both breast and prostate cancers Creighton, Chad J BMC Genomics Research Article BACKGROUND: The development of resistance to hormone therapy in both breast and prostate cancers is attributed to tens of thousands of patient deaths every year. RESULTS: From analyses of global gene expression profile data, a nonrandom amount of overlap was observed between the set of genes associated with estrogen receptor negative (ER-), hormone independent breast cancer and the set of genes associated with androgen independent (AI) prostate cancer. A set of 81 genes was identified that were differentially expressed between ER- and ER+ clinical breast tumors and breast cancer cell lines and that showed concordant expression in AI versus AS (androgen sensitive) prostate cell lines. This common gene signature of hormone independence was used to identify a subset of clinically localized primary prostate tumors that shared extensive similarities in gene transcription with both ER- breast and AI prostate cell lines and that tended to show concurrent deactivation of the androgen signaling pathway. Both ER- breast and AI prostate cell lines were significantly enriched for transcriptional targets of signaling via epidermal growth factor receptor (EGFR). CONCLUSION: This study indicates that the growth- and survival-promoting functions of hormone receptors can be bypassed in a subset of both breast and prostate cancers by the same growth factor signaling pathways, which holds implications for the use of targeted therapy regimens. BioMed Central 2007-06-28 /pmc/articles/PMC1914359/ /pubmed/17598908 http://dx.doi.org/10.1186/1471-2164-8-199 Text en Copyright © 2007 Creighton; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Creighton, Chad J A gene transcription signature associated with hormone independence in a subset of both breast and prostate cancers |
title | A gene transcription signature associated with hormone independence in a subset of both breast and prostate cancers |
title_full | A gene transcription signature associated with hormone independence in a subset of both breast and prostate cancers |
title_fullStr | A gene transcription signature associated with hormone independence in a subset of both breast and prostate cancers |
title_full_unstemmed | A gene transcription signature associated with hormone independence in a subset of both breast and prostate cancers |
title_short | A gene transcription signature associated with hormone independence in a subset of both breast and prostate cancers |
title_sort | gene transcription signature associated with hormone independence in a subset of both breast and prostate cancers |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914359/ https://www.ncbi.nlm.nih.gov/pubmed/17598908 http://dx.doi.org/10.1186/1471-2164-8-199 |
work_keys_str_mv | AT creightonchadj agenetranscriptionsignatureassociatedwithhormoneindependenceinasubsetofbothbreastandprostatecancers AT creightonchadj genetranscriptionsignatureassociatedwithhormoneindependenceinasubsetofbothbreastandprostatecancers |