Cargando…

Automated real time constant-specificity surveillance for disease outbreaks

BACKGROUND: For real time surveillance, detection of abnormal disease patterns is based on a difference between patterns observed, and those predicted by models of historical data. The usefulness of outbreak detection strategies depends on their specificity; the false alarm rate affects the interpre...

Descripción completa

Detalles Bibliográficos
Autores principales: Wieland, Shannon C, Brownstein, John S, Berger, Bonnie, Mandl, Kenneth D
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1919360/
https://www.ncbi.nlm.nih.gov/pubmed/17567912
http://dx.doi.org/10.1186/1472-6947-7-15
Descripción
Sumario:BACKGROUND: For real time surveillance, detection of abnormal disease patterns is based on a difference between patterns observed, and those predicted by models of historical data. The usefulness of outbreak detection strategies depends on their specificity; the false alarm rate affects the interpretation of alarms. RESULTS: We evaluate the specificity of five traditional models: autoregressive, Serfling, trimmed seasonal, wavelet-based, and generalized linear. We apply each to 12 years of emergency department visits for respiratory infection syndromes at a pediatric hospital, finding that the specificity of the five models was almost always a non-constant function of the day of the week, month, and year of the study (p < 0.05). We develop an outbreak detection method, called the expectation-variance model, based on generalized additive modeling to achieve a constant specificity by accounting for not only the expected number of visits, but also the variance of the number of visits. The expectation-variance model achieves constant specificity on all three time scales, as well as earlier detection and improved sensitivity compared to traditional methods in most circumstances. CONCLUSION: Modeling the variance of visit patterns enables real-time detection with known, constant specificity at all times. With constant specificity, public health practitioners can better interpret the alarms and better evaluate the cost-effectiveness of surveillance systems.