Cargando…
Cortical Modulations Increase in Early Sessions with Brain-Machine Interface
BACKGROUND: During planning and execution of reaching movements, the activity of cortical motor neurons is modulated by a diversity of motor, sensory, and cognitive signals. Brain-machine interfaces (BMIs) extract part of these modulations to directly control artificial actuators. However, cortical...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1919433/ https://www.ncbi.nlm.nih.gov/pubmed/17637835 http://dx.doi.org/10.1371/journal.pone.0000619 |
_version_ | 1782134176060801024 |
---|---|
author | Zacksenhouse, Miriam Lebedev, Mikhail A. Carmena, Jose M. O'Doherty, Joseph E. Henriquez, Craig Nicolelis, Miguel A.L. |
author_facet | Zacksenhouse, Miriam Lebedev, Mikhail A. Carmena, Jose M. O'Doherty, Joseph E. Henriquez, Craig Nicolelis, Miguel A.L. |
author_sort | Zacksenhouse, Miriam |
collection | PubMed |
description | BACKGROUND: During planning and execution of reaching movements, the activity of cortical motor neurons is modulated by a diversity of motor, sensory, and cognitive signals. Brain-machine interfaces (BMIs) extract part of these modulations to directly control artificial actuators. However, cortical modulations that emerge in the novel context of operating the BMI are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Here we analyzed the changes in neuronal modulations that occurred in different cortical motor areas as monkeys learned to use a BMI to control reaching movements. Using spike-train analysis methods we demonstrate that the modulations of the firing-rates of cortical neurons increased abruptly after the monkeys started operating the BMI. Regression analysis revealed that these enhanced modulations were not correlated with the kinematics of the movement. The initial enhancement in firing rate modulations declined gradually with subsequent training in parallel with the improvement in behavioral performance. CONCLUSIONS/SIGNIFICANCE: We conclude that the enhanced modulations are related to computational tasks that are significant especially in novel motor contexts. Although the function and neuronal mechanism of the enhanced cortical modulations are open for further inquiries, we discuss their potential role in processing execution errors and representing corrective or explorative activity. These representations are expected to contribute to the formation of internal models of the external actuator and their decoding may facilitate BMI improvement. |
format | Text |
id | pubmed-1919433 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-19194332007-07-18 Cortical Modulations Increase in Early Sessions with Brain-Machine Interface Zacksenhouse, Miriam Lebedev, Mikhail A. Carmena, Jose M. O'Doherty, Joseph E. Henriquez, Craig Nicolelis, Miguel A.L. PLoS One Research Article BACKGROUND: During planning and execution of reaching movements, the activity of cortical motor neurons is modulated by a diversity of motor, sensory, and cognitive signals. Brain-machine interfaces (BMIs) extract part of these modulations to directly control artificial actuators. However, cortical modulations that emerge in the novel context of operating the BMI are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Here we analyzed the changes in neuronal modulations that occurred in different cortical motor areas as monkeys learned to use a BMI to control reaching movements. Using spike-train analysis methods we demonstrate that the modulations of the firing-rates of cortical neurons increased abruptly after the monkeys started operating the BMI. Regression analysis revealed that these enhanced modulations were not correlated with the kinematics of the movement. The initial enhancement in firing rate modulations declined gradually with subsequent training in parallel with the improvement in behavioral performance. CONCLUSIONS/SIGNIFICANCE: We conclude that the enhanced modulations are related to computational tasks that are significant especially in novel motor contexts. Although the function and neuronal mechanism of the enhanced cortical modulations are open for further inquiries, we discuss their potential role in processing execution errors and representing corrective or explorative activity. These representations are expected to contribute to the formation of internal models of the external actuator and their decoding may facilitate BMI improvement. Public Library of Science 2007-07-18 /pmc/articles/PMC1919433/ /pubmed/17637835 http://dx.doi.org/10.1371/journal.pone.0000619 Text en Zacksenhouse et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Zacksenhouse, Miriam Lebedev, Mikhail A. Carmena, Jose M. O'Doherty, Joseph E. Henriquez, Craig Nicolelis, Miguel A.L. Cortical Modulations Increase in Early Sessions with Brain-Machine Interface |
title | Cortical Modulations Increase in Early Sessions with Brain-Machine Interface |
title_full | Cortical Modulations Increase in Early Sessions with Brain-Machine Interface |
title_fullStr | Cortical Modulations Increase in Early Sessions with Brain-Machine Interface |
title_full_unstemmed | Cortical Modulations Increase in Early Sessions with Brain-Machine Interface |
title_short | Cortical Modulations Increase in Early Sessions with Brain-Machine Interface |
title_sort | cortical modulations increase in early sessions with brain-machine interface |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1919433/ https://www.ncbi.nlm.nih.gov/pubmed/17637835 http://dx.doi.org/10.1371/journal.pone.0000619 |
work_keys_str_mv | AT zacksenhousemiriam corticalmodulationsincreaseinearlysessionswithbrainmachineinterface AT lebedevmikhaila corticalmodulationsincreaseinearlysessionswithbrainmachineinterface AT carmenajosem corticalmodulationsincreaseinearlysessionswithbrainmachineinterface AT odohertyjosephe corticalmodulationsincreaseinearlysessionswithbrainmachineinterface AT henriquezcraig corticalmodulationsincreaseinearlysessionswithbrainmachineinterface AT nicolelismiguelal corticalmodulationsincreaseinearlysessionswithbrainmachineinterface |