Cargando…
A statistical learning approach to the modeling of chromatographic retention of oligonucleotides incorporating sequence and secondary structure data
We propose a new model for predicting the retention time of oligonucleotides. The model is based on ν support vector regression using features derived from base sequence and predicted secondary structure of oligonucleotides. Because of the secondary structure information, the model is applicable eve...
Autores principales: | Sturm, Marc, Quinten, Sascha, Huber, Christian G., Kohlbacher, Oliver |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1919494/ https://www.ncbi.nlm.nih.gov/pubmed/17567619 http://dx.doi.org/10.1093/nar/gkm338 |
Ejemplares similares
-
Statistical learning of peptide retention behavior in chromatographic separations: a new kernel-based approach for computational proteomics
por: Pfeifer, Nico, et al.
Publicado: (2007) -
Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods
por: Väremo, Leif, et al.
Publicado: (2013) -
Simultaneous effect of different chromatographic conditions on the chromatographic retention of pentapeptide derivatives (HGRFG and NPNPT)
por: Peng, Huan, et al.
Publicado: (2023) -
Alignment-free [Formula: see text] oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomically-derived viral sequences
por: Ahlgren, Nathan A., et al.
Publicado: (2017) -
Integrating genome sequence and structural data for statistical learning to predict transcription factor binding sites
por: Long, Pengpeng, et al.
Publicado: (2020)