Cargando…

Nuclear interactions of topoisomerase II α and β with phospholipid scramblase 1

DNA topoisomerase (topo) II modulates DNA topology and is essential for cell division. There are two isoforms of topo II (α and β) that have limited functional redundancy, although their catalytic mechanisms appear the same. Using their COOH-terminal domains (CTDs) in yeast two-hybrid analysis, we h...

Descripción completa

Detalles Bibliográficos
Autores principales: Wyles, Jessica P., Wu, Zhongqin, Mirski, Shelagh E.L., Cole, Susan P.C.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1919507/
https://www.ncbi.nlm.nih.gov/pubmed/17567603
http://dx.doi.org/10.1093/nar/gkm434
Descripción
Sumario:DNA topoisomerase (topo) II modulates DNA topology and is essential for cell division. There are two isoforms of topo II (α and β) that have limited functional redundancy, although their catalytic mechanisms appear the same. Using their COOH-terminal domains (CTDs) in yeast two-hybrid analysis, we have identified phospholipid scramblase 1 (PLSCR1) as a binding partner of both topo II α and β. Although predominantly a plasma membrane protein involved in phosphatidylserine externalization, PLSCR1 can also be imported into the nucleus where it may have a tumour suppressor function. The interactions of PLSCR1 and topo II were confirmed by pull-down assays with topo II α and β CTD fusion proteins and endogenous PLSCR1, and by co-immunoprecipitation of endogenous PLSCR1 and topo II α and β from HeLa cell nuclear extracts. PLSCR1 also increased the decatenation activity of human topo IIα. A conserved basic sequence in the CTD of topo IIα was identified as being essential for binding to PLSCR1 and binding of the two proteins could be inhibited by a synthetic peptide corresponding to topo IIα amino acids 1430-1441. These studies reveal for the first time a physical and functional interaction between topo II and PLSCR1.