Cargando…
Neural Decision Boundaries for Maximal Information Transmission
We consider here how to separate multidimensional signals into two categories, such that the binary decision transmits the maximum possible information about those signals. Our motivation comes from the nervous system, where neurons process multidimensional signals into a binary sequence of response...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1920551/ https://www.ncbi.nlm.nih.gov/pubmed/17653273 http://dx.doi.org/10.1371/journal.pone.0000646 |
Sumario: | We consider here how to separate multidimensional signals into two categories, such that the binary decision transmits the maximum possible information about those signals. Our motivation comes from the nervous system, where neurons process multidimensional signals into a binary sequence of responses (spikes). In a small noise limit, we derive a general equation for the decision boundary that locally relates its curvature to the probability distribution of inputs. We show that for Gaussian inputs the optimal boundaries are planar, but for non–Gaussian inputs the curvature is nonzero. As an example, we consider exponentially distributed inputs, which are known to approximate a variety of signals from natural environment. |
---|