Cargando…
Random subwindows and extremely randomized trees for image classification in cell biology
BACKGROUND: With the improvements in biosensors and high-throughput image acquisition technologies, life science laboratories are able to perform an increasing number of experiments that involve the generation of a large amount of images at different imaging modalities/scales. It stresses the need f...
Autores principales: | Marée, Raphaël, Geurts, Pierre, Wehenkel, Louis |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1924507/ https://www.ncbi.nlm.nih.gov/pubmed/17634092 http://dx.doi.org/10.1186/1471-2121-8-S1-S2 |
Ejemplares similares
-
Phenotype Classification of Zebrafish Embryos by Supervised Learning
por: Jeanray, Nathalie, et al.
Publicado: (2015) -
Classifying pairs with trees for supervised biological network inference
por: Schrynemackers, Marie, et al.
Publicado: (2015) -
Exploiting SNP Correlations within Random Forest for Genome-Wide Association Studies
por: Botta, Vincent, et al.
Publicado: (2014) -
Inferring Regulatory Networks from Expression Data Using Tree-Based Methods
por: Huynh-Thu, Vân Anh, et al.
Publicado: (2010) -
Collaborative analysis of multi-gigapixel imaging data using Cytomine
por: Marée, Raphaël, et al.
Publicado: (2016)