Cargando…

Modular architecture of protein structures and allosteric communications: potential implications for signaling proteins and regulatory linkages

BACKGROUND: Allosteric communications are vital for cellular signaling. Here we explore a relationship between protein architectural organization and shortcuts in signaling pathways. RESULTS: We show that protein domains consist of modules interconnected by residues that mediate signaling through th...

Descripción completa

Detalles Bibliográficos
Autores principales: del Sol, Antonio, Araúzo-Bravo, Marcos J, Amoros, Dolors, Nussinov, Ruth
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1929157/
https://www.ncbi.nlm.nih.gov/pubmed/17531094
http://dx.doi.org/10.1186/gb-2007-8-5-r92
_version_ 1782134272559153152
author del Sol, Antonio
Araúzo-Bravo, Marcos J
Amoros, Dolors
Nussinov, Ruth
author_facet del Sol, Antonio
Araúzo-Bravo, Marcos J
Amoros, Dolors
Nussinov, Ruth
author_sort del Sol, Antonio
collection PubMed
description BACKGROUND: Allosteric communications are vital for cellular signaling. Here we explore a relationship between protein architectural organization and shortcuts in signaling pathways. RESULTS: We show that protein domains consist of modules interconnected by residues that mediate signaling through the shortest pathways. These mediating residues tend to be located at the inter-modular boundaries, which are more rigid and display a larger number of long-range interactions than intra-modular regions. The inter-modular boundaries contain most of the residues centrally conserved in the protein fold, which may be crucial for information transfer between amino acids. Our approach to modular decomposition relies on a representation of protein structures as residue-interacting networks, and removal of the most central residue contacts, which are assumed to be crucial for allosteric communications. The modular decomposition of 100 multi-domain protein structures indicates that modules constitute the building blocks of domains. The analysis of 13 allosteric proteins revealed that modules characterize experimentally identified functional regions. Based on the study of an additional functionally annotated dataset of 115 proteins, we propose that high-modularity modules include functional sites and are the basic functional units. We provide examples (the Gα(s )subunit and P450 cytochromes) to illustrate that the modular architecture of active sites is linked to their functional specialization. CONCLUSION: Our method decomposes protein structures into modules, allowing the study of signal transmission between functional sites. A modular configuration might be advantageous: it allows signaling proteins to expand their regulatory linkages and may elicit a broader range of control mechanisms either via modular combinations or through modulation of inter-modular linkages.
format Text
id pubmed-1929157
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-19291572007-07-21 Modular architecture of protein structures and allosteric communications: potential implications for signaling proteins and regulatory linkages del Sol, Antonio Araúzo-Bravo, Marcos J Amoros, Dolors Nussinov, Ruth Genome Biol Research BACKGROUND: Allosteric communications are vital for cellular signaling. Here we explore a relationship between protein architectural organization and shortcuts in signaling pathways. RESULTS: We show that protein domains consist of modules interconnected by residues that mediate signaling through the shortest pathways. These mediating residues tend to be located at the inter-modular boundaries, which are more rigid and display a larger number of long-range interactions than intra-modular regions. The inter-modular boundaries contain most of the residues centrally conserved in the protein fold, which may be crucial for information transfer between amino acids. Our approach to modular decomposition relies on a representation of protein structures as residue-interacting networks, and removal of the most central residue contacts, which are assumed to be crucial for allosteric communications. The modular decomposition of 100 multi-domain protein structures indicates that modules constitute the building blocks of domains. The analysis of 13 allosteric proteins revealed that modules characterize experimentally identified functional regions. Based on the study of an additional functionally annotated dataset of 115 proteins, we propose that high-modularity modules include functional sites and are the basic functional units. We provide examples (the Gα(s )subunit and P450 cytochromes) to illustrate that the modular architecture of active sites is linked to their functional specialization. CONCLUSION: Our method decomposes protein structures into modules, allowing the study of signal transmission between functional sites. A modular configuration might be advantageous: it allows signaling proteins to expand their regulatory linkages and may elicit a broader range of control mechanisms either via modular combinations or through modulation of inter-modular linkages. BioMed Central 2007 2007-05-25 /pmc/articles/PMC1929157/ /pubmed/17531094 http://dx.doi.org/10.1186/gb-2007-8-5-r92 Text en Copyright © 2007 del Sol et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
del Sol, Antonio
Araúzo-Bravo, Marcos J
Amoros, Dolors
Nussinov, Ruth
Modular architecture of protein structures and allosteric communications: potential implications for signaling proteins and regulatory linkages
title Modular architecture of protein structures and allosteric communications: potential implications for signaling proteins and regulatory linkages
title_full Modular architecture of protein structures and allosteric communications: potential implications for signaling proteins and regulatory linkages
title_fullStr Modular architecture of protein structures and allosteric communications: potential implications for signaling proteins and regulatory linkages
title_full_unstemmed Modular architecture of protein structures and allosteric communications: potential implications for signaling proteins and regulatory linkages
title_short Modular architecture of protein structures and allosteric communications: potential implications for signaling proteins and regulatory linkages
title_sort modular architecture of protein structures and allosteric communications: potential implications for signaling proteins and regulatory linkages
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1929157/
https://www.ncbi.nlm.nih.gov/pubmed/17531094
http://dx.doi.org/10.1186/gb-2007-8-5-r92
work_keys_str_mv AT delsolantonio modulararchitectureofproteinstructuresandallostericcommunicationspotentialimplicationsforsignalingproteinsandregulatorylinkages
AT arauzobravomarcosj modulararchitectureofproteinstructuresandallostericcommunicationspotentialimplicationsforsignalingproteinsandregulatorylinkages
AT amorosdolors modulararchitectureofproteinstructuresandallostericcommunicationspotentialimplicationsforsignalingproteinsandregulatorylinkages
AT nussinovruth modulararchitectureofproteinstructuresandallostericcommunicationspotentialimplicationsforsignalingproteinsandregulatorylinkages