Cargando…
A multiresolution approach to automated classification of protein subcellular location images
BACKGROUND: Fluorescence microscopy is widely used to determine the subcellular location of proteins. Efforts to determine location on a proteome-wide basis create a need for automated methods to analyze the resulting images. Over the past ten years, the feasibility of using machine learning methods...
Autores principales: | Chebira, Amina, Barbotin, Yann, Jackson, Charles, Merryman, Thomas, Srinivasa, Gowri, Murphy, Robert F, Kovačević, Jelena |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1933440/ https://www.ncbi.nlm.nih.gov/pubmed/17578580 http://dx.doi.org/10.1186/1471-2105-8-210 |
Ejemplares similares
-
A graphical model approach to automated classification of protein subcellular location patterns in multi-cell images
por: Chen, Shann-Ching, et al.
Publicado: (2006) -
Lung Cancer Classification in Histopathology Images Using Multiresolution Efficient Nets
por: Anjum, Sunila, et al.
Publicado: (2023) -
Automated Analysis and Reannotation of Subcellular Locations in Confocal Images from the Human Protein Atlas
por: Li, Jieyue, et al.
Publicado: (2012) -
Protein subcellular location pattern classification in cellular images using latent discriminative models
por: Li, Jieyue, et al.
Publicado: (2012) -
Multiresolution-Based Singular Value Decomposition Approach for Breast Cancer Image Classification
por: Mann, Suman, et al.
Publicado: (2022)