Cargando…
Excess of Gβ(e) over Gqα(e) in vivo prevents dark, spontaneous activity of Drosophila photoreceptors
Drosophila melanogaster photoreceptor cells are capable of detecting single photons. This utmost sensitivity is critically dependent on the maintenance of an exceedingly low, dark, spontaneous activity of photoreceptor cells. However, the underlying mechanisms of this hallmark of phototransduction a...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1934410/ https://www.ncbi.nlm.nih.gov/pubmed/16260498 http://dx.doi.org/10.1083/jcb.200506082 |
_version_ | 1782134350852128768 |
---|---|
author | Elia, Natalie Frechter, Shahar Gedi, Yinon Minke, Baruch Selinger, Zvi |
author_facet | Elia, Natalie Frechter, Shahar Gedi, Yinon Minke, Baruch Selinger, Zvi |
author_sort | Elia, Natalie |
collection | PubMed |
description | Drosophila melanogaster photoreceptor cells are capable of detecting single photons. This utmost sensitivity is critically dependent on the maintenance of an exceedingly low, dark, spontaneous activity of photoreceptor cells. However, the underlying mechanisms of this hallmark of phototransduction are not fully understood. An analysis of the Drosophila visual heterotrimeric (αβγ) Gq protein revealed that wild-type Drosophila flies have about a twofold excess of Gβ over Gα subunits of the visual Gq protein. Studies of Gβ(e) mutants in which the excess of Gβ was genetically eliminated showed dramatic dark, spontaneous activity of the photoreceptor cells, whereas concurrent genetic reduction of the Gα subunit, which restored the excess of Gβ, abolished this effect. These results indicate that an excess of Gβ over Gα is a strategy used in vivo for the suppression of spontaneous activity, thereby yielding a high signal to noise ratio, which is characteristic of the photoreceptor light response. This mechanism could be relevant to the regulation of G protein signaling in general. |
format | Text |
id | pubmed-1934410 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-19344102008-03-05 Excess of Gβ(e) over Gqα(e) in vivo prevents dark, spontaneous activity of Drosophila photoreceptors Elia, Natalie Frechter, Shahar Gedi, Yinon Minke, Baruch Selinger, Zvi J Cell Biol Research Articles Drosophila melanogaster photoreceptor cells are capable of detecting single photons. This utmost sensitivity is critically dependent on the maintenance of an exceedingly low, dark, spontaneous activity of photoreceptor cells. However, the underlying mechanisms of this hallmark of phototransduction are not fully understood. An analysis of the Drosophila visual heterotrimeric (αβγ) Gq protein revealed that wild-type Drosophila flies have about a twofold excess of Gβ over Gα subunits of the visual Gq protein. Studies of Gβ(e) mutants in which the excess of Gβ was genetically eliminated showed dramatic dark, spontaneous activity of the photoreceptor cells, whereas concurrent genetic reduction of the Gα subunit, which restored the excess of Gβ, abolished this effect. These results indicate that an excess of Gβ over Gα is a strategy used in vivo for the suppression of spontaneous activity, thereby yielding a high signal to noise ratio, which is characteristic of the photoreceptor light response. This mechanism could be relevant to the regulation of G protein signaling in general. The Rockefeller University Press 2005-11-07 /pmc/articles/PMC1934410/ /pubmed/16260498 http://dx.doi.org/10.1083/jcb.200506082 Text en Copyright © 2005, The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Research Articles Elia, Natalie Frechter, Shahar Gedi, Yinon Minke, Baruch Selinger, Zvi Excess of Gβ(e) over Gqα(e) in vivo prevents dark, spontaneous activity of Drosophila photoreceptors |
title | Excess of Gβ(e) over Gqα(e) in vivo prevents dark, spontaneous activity of Drosophila photoreceptors |
title_full | Excess of Gβ(e) over Gqα(e) in vivo prevents dark, spontaneous activity of Drosophila photoreceptors |
title_fullStr | Excess of Gβ(e) over Gqα(e) in vivo prevents dark, spontaneous activity of Drosophila photoreceptors |
title_full_unstemmed | Excess of Gβ(e) over Gqα(e) in vivo prevents dark, spontaneous activity of Drosophila photoreceptors |
title_short | Excess of Gβ(e) over Gqα(e) in vivo prevents dark, spontaneous activity of Drosophila photoreceptors |
title_sort | excess of gβ(e) over gqα(e) in vivo prevents dark, spontaneous activity of drosophila photoreceptors |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1934410/ https://www.ncbi.nlm.nih.gov/pubmed/16260498 http://dx.doi.org/10.1083/jcb.200506082 |
work_keys_str_mv | AT elianatalie excessofgbeovergqaeinvivopreventsdarkspontaneousactivityofdrosophilaphotoreceptors AT frechtershahar excessofgbeovergqaeinvivopreventsdarkspontaneousactivityofdrosophilaphotoreceptors AT gediyinon excessofgbeovergqaeinvivopreventsdarkspontaneousactivityofdrosophilaphotoreceptors AT minkebaruch excessofgbeovergqaeinvivopreventsdarkspontaneousactivityofdrosophilaphotoreceptors AT selingerzvi excessofgbeovergqaeinvivopreventsdarkspontaneousactivityofdrosophilaphotoreceptors |