Cargando…
Statistical methods for ranking differentially expressed genes
In the analysis of microarray data the identification of differential expression is paramount. Here I outline a method for finding an optimal test statistic with which to rank genes with respect to differential expression. Tests of the method show that it allows generation of top gene lists that giv...
Autor principal: | Broberg, Per |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC193620/ https://www.ncbi.nlm.nih.gov/pubmed/12801415 http://dx.doi.org/10.1186/gb-2003-4-6-r41 |
Ejemplares similares
-
Rank–rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures
por: Plaisier, Seema B., et al.
Publicado: (2010) -
Modeling expression ranks for noise-tolerant differential expression analysis of scRNA-seq data
por: Gupta, Krishan, et al.
Publicado: (2021) -
Topconfects: a package for confident effect sizes in differential expression analysis provides a more biologically useful ranked gene list
por: Harrison, Paul F., et al.
Publicado: (2019) -
DawnRank: discovering personalized driver genes in cancer
por: Hou, Jack P, et al.
Publicado: (2014) -
Statistical tools for synthesizing lists of differentially expressed features in related experiments
por: Blangiardo, Marta, et al.
Publicado: (2007)