Cargando…
A model-based optimization framework for the inference of regulatory interactions using time-course DNA microarray expression data
BACKGROUND: Proteins are the primary regulatory agents of transcription even though mRNA expression data alone, from systems like DNA microarrays, are widely used. In addition, the regulation process in genetic systems is inherently non-linear in nature, and most studies employ a time-course analysi...
Autores principales: | Thomas, Reuben, Paredes, Carlos J, Mehrotra, Sanjay, Hatzimanikatis, Vassily, Papoutsakis, Eleftherios T |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1940027/ https://www.ncbi.nlm.nih.gov/pubmed/17603872 http://dx.doi.org/10.1186/1471-2105-8-228 |
Ejemplares similares
-
The effects of model complexity and size on metabolic flux distribution and control: case study in Escherichia coli
por: Hameri, Tuure, et al.
Publicado: (2021) -
Statistical inference in ensemble modeling of cellular metabolism
por: Hameri, Tuure, et al.
Publicado: (2019) -
A computational framework for gene regulatory network inference that combines multiple methods and datasets
por: Gupta, Rita, et al.
Publicado: (2011) -
Optimized LOWESS normalization parameter selection for DNA microarray data
por: Berger, John A, et al.
Publicado: (2004) -
A continuous optimization approach for inferring parameters in mathematical models of regulatory networks
por: Deng, Zhimin, et al.
Publicado: (2014)