Cargando…

A constrained polynomial regression procedure for estimating the local False Discovery Rate

BACKGROUND: In the context of genomic association studies, for which a large number of statistical tests are performed simultaneously, the local False Discovery Rate (lFDR), which quantifies the evidence of a specific gene association with a clinical or biological variable of interest, is a relevant...

Descripción completa

Detalles Bibliográficos
Autores principales: Dalmasso, Cyril, Bar-Hen, Avner, Broët, Philippe
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1940264/
https://www.ncbi.nlm.nih.gov/pubmed/17603882
http://dx.doi.org/10.1186/1471-2105-8-229
Descripción
Sumario:BACKGROUND: In the context of genomic association studies, for which a large number of statistical tests are performed simultaneously, the local False Discovery Rate (lFDR), which quantifies the evidence of a specific gene association with a clinical or biological variable of interest, is a relevant criterion for taking into account the multiple testing problem. The lFDR not only allows an inference to be made for each gene through its specific value, but also an estimate of Benjamini-Hochberg's False Discovery Rate (FDR) for subsets of genes. RESULTS: In the framework of estimating procedures without any distributional assumption under the alternative hypothesis, a new and efficient procedure for estimating the lFDR is described. The results of a simulation study indicated good performances for the proposed estimator in comparison to four published ones. The five different procedures were applied to real datasets. CONCLUSION: A novel and efficient procedure for estimating lFDR was developed and evaluated.