Cargando…

Condensin I Reveals New Insights on Mouse Meiotic Chromosome Structure and Dynamics

Chromosome shaping and individualization are necessary requisites to warrant the correct segregation of genomes in either mitotic or meiotic cell divisions. These processes are mainly prompted in vertebrates by three multiprotein complexes termed cohesin and condensin I and II. In the present study...

Descripción completa

Detalles Bibliográficos
Autores principales: Viera, Alberto, Gómez, Rocío, Parra, María T., Schmiesing, John A., Yokomori, Kyoko, Rufas, Julio S., Suja, José A.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1942118/
https://www.ncbi.nlm.nih.gov/pubmed/17712430
http://dx.doi.org/10.1371/journal.pone.0000783
Descripción
Sumario:Chromosome shaping and individualization are necessary requisites to warrant the correct segregation of genomes in either mitotic or meiotic cell divisions. These processes are mainly prompted in vertebrates by three multiprotein complexes termed cohesin and condensin I and II. In the present study we have analyzed by immunostaining the appearance and subcellular distribution of condensin I in mouse mitotic and meiotic chromosomes. Our results demonstrate that in either mitotically or meiotically dividing cells, condensin I is loaded onto chromosomes by prometaphase. Condensin I is detectable as a fuzzy axial structure running inside chromatids of condensed chromosomes. The distribution of condensin I along the chromosome length is not uniform, since it preferentially accumulates close to the chromosome ends. Interestingly, these round accumulations found at the condensin I axes termini colocalized with telomere complexes. Additionally, we present the relative distribution of the condensin I and cohesin complexes in metaphase I bivalents. All these new data have allowed us to propose a comprehensive model for meiotic chromosome structure.