Cargando…
Variable selection under multiple imputation using the bootstrap in a prognostic study
BACKGROUND: Missing data is a challenging problem in many prognostic studies. Multiple imputation (MI) accounts for imputation uncertainty that allows for adequate statistical testing. We developed and tested a methodology combining MI with bootstrapping techniques for studying prognostic variable s...
Autores principales: | Heymans, Martijn W, van Buuren, Stef, Knol, Dirk L, van Mechelen, Willem, de Vet, Henrica CW |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1945032/ https://www.ncbi.nlm.nih.gov/pubmed/17629912 http://dx.doi.org/10.1186/1471-2288-7-33 |
Ejemplares similares
-
Combining multiple imputation and bootstrap in the analysis of cost‐effectiveness trial data
por: Brand, Jaap, et al.
Publicado: (2018) -
The search for stable prognostic models in multiple imputed data sets
por: Vergouw, David, et al.
Publicado: (2010) -
Flexible imputation of missing data
por: van Buuren, Stef
Publicado: (2018) -
Cost-effectiveness of a workplace intervention for sick-listed employees with common mental disorders: design of a randomized controlled trial
por: van Oostrom, Sandra H, et al.
Publicado: (2008) -
Bootstrap inference for multiple imputation under uncongeniality and misspecification
por: Bartlett, Jonathan W, et al.
Publicado: (2020)