Cargando…
Vaccinia virus A12L protein and its AG/A proteolysis play an important role in viral morphogenic transition
Like the major vaccinia virus (VV) core protein precursors, p4b and p25K, the 25 kDa VV A12L late gene product (p17K) is proteolytically maturated at the conserved Ala-Gly-Ala motif. However, the association of the precursor and its cleavage product with the core of mature virion suggests that both...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1947960/ https://www.ncbi.nlm.nih.gov/pubmed/17625005 http://dx.doi.org/10.1186/1743-422X-4-73 |
_version_ | 1782134492432957440 |
---|---|
author | Yang, Su Jung Hruby, Dennis E |
author_facet | Yang, Su Jung Hruby, Dennis E |
author_sort | Yang, Su Jung |
collection | PubMed |
description | Like the major vaccinia virus (VV) core protein precursors, p4b and p25K, the 25 kDa VV A12L late gene product (p17K) is proteolytically maturated at the conserved Ala-Gly-Ala motif. However, the association of the precursor and its cleavage product with the core of mature virion suggests that both of the A12L proteins may be required for virus assembly. Here, in order to test the requirement of the A12L protein and its proteolysis in viral replication, a conditional lethal mutant virus (vvtetOA12L) was constructed to regulate A12L expression by the presence or absence of an inducer, tetracycline. In the absence of tetracycline, replication of vvtetOA12L was inhibited by 80% and this inhibition could be overcome by transient expression of the wild-type copy of the A12L gene. In contrast, mutation of the AG/A site abrogated the ability of the transfected A12L gene to rescue, indicating that A12L proteolysis plays an important role in viral replication. Electron microscopy analysis of the A12L deficient virus demonstrated the aberrant virus particles, which were displayed by the AG/A site mutation. Thus, we concluded that the not only A12L protein but also its cleavage processing plays an essential role in virus morphogenic transition. |
format | Text |
id | pubmed-1947960 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-19479602007-08-14 Vaccinia virus A12L protein and its AG/A proteolysis play an important role in viral morphogenic transition Yang, Su Jung Hruby, Dennis E Virol J Research Like the major vaccinia virus (VV) core protein precursors, p4b and p25K, the 25 kDa VV A12L late gene product (p17K) is proteolytically maturated at the conserved Ala-Gly-Ala motif. However, the association of the precursor and its cleavage product with the core of mature virion suggests that both of the A12L proteins may be required for virus assembly. Here, in order to test the requirement of the A12L protein and its proteolysis in viral replication, a conditional lethal mutant virus (vvtetOA12L) was constructed to regulate A12L expression by the presence or absence of an inducer, tetracycline. In the absence of tetracycline, replication of vvtetOA12L was inhibited by 80% and this inhibition could be overcome by transient expression of the wild-type copy of the A12L gene. In contrast, mutation of the AG/A site abrogated the ability of the transfected A12L gene to rescue, indicating that A12L proteolysis plays an important role in viral replication. Electron microscopy analysis of the A12L deficient virus demonstrated the aberrant virus particles, which were displayed by the AG/A site mutation. Thus, we concluded that the not only A12L protein but also its cleavage processing plays an essential role in virus morphogenic transition. BioMed Central 2007-07-11 /pmc/articles/PMC1947960/ /pubmed/17625005 http://dx.doi.org/10.1186/1743-422X-4-73 Text en Copyright © 2007 Yang and Hruby; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Yang, Su Jung Hruby, Dennis E Vaccinia virus A12L protein and its AG/A proteolysis play an important role in viral morphogenic transition |
title | Vaccinia virus A12L protein and its AG/A proteolysis play an important role in viral morphogenic transition |
title_full | Vaccinia virus A12L protein and its AG/A proteolysis play an important role in viral morphogenic transition |
title_fullStr | Vaccinia virus A12L protein and its AG/A proteolysis play an important role in viral morphogenic transition |
title_full_unstemmed | Vaccinia virus A12L protein and its AG/A proteolysis play an important role in viral morphogenic transition |
title_short | Vaccinia virus A12L protein and its AG/A proteolysis play an important role in viral morphogenic transition |
title_sort | vaccinia virus a12l protein and its ag/a proteolysis play an important role in viral morphogenic transition |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1947960/ https://www.ncbi.nlm.nih.gov/pubmed/17625005 http://dx.doi.org/10.1186/1743-422X-4-73 |
work_keys_str_mv | AT yangsujung vacciniavirusa12lproteinanditsagaproteolysisplayanimportantroleinviralmorphogenictransition AT hrubydennise vacciniavirusa12lproteinanditsagaproteolysisplayanimportantroleinviralmorphogenictransition |