Cargando…
The functional modulation of epigenetic regulators by alternative splicing
BACKGROUND: Epigenetic regulators (histone acetyltransferases, methyltransferases, chromatin-remodelling enzymes, etc) play a fundamental role in the control of gene expression by modifying the local state of chromatin. However, due to their recent discovery, little is yet known about their own regu...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1949830/ https://www.ncbi.nlm.nih.gov/pubmed/17651478 http://dx.doi.org/10.1186/1471-2164-8-252 |
_version_ | 1782134523069202432 |
---|---|
author | Lois, Sergio Blanco, Noemí Martínez-Balbás, Marian de la Cruz, Xavier |
author_facet | Lois, Sergio Blanco, Noemí Martínez-Balbás, Marian de la Cruz, Xavier |
author_sort | Lois, Sergio |
collection | PubMed |
description | BACKGROUND: Epigenetic regulators (histone acetyltransferases, methyltransferases, chromatin-remodelling enzymes, etc) play a fundamental role in the control of gene expression by modifying the local state of chromatin. However, due to their recent discovery, little is yet known about their own regulation. This paper addresses this point, focusing on alternative splicing regulation, a mechanism already known to play an important role in other protein families, e.g. transcription factors, membrane receptors, etc. RESULTS: To this end, we compiled the data available on the presence/absence of alternative splicing for a set of 160 different epigenetic regulators, taking advantage of the relatively large amount of unexplored data on alternative splicing available in public databases. We found that 49 % (70 % in human) of these genes express more than one transcript. We then studied their alternative splicing patterns, focusing on those changes affecting the enzyme's domain composition. In general, we found that these sequence changes correspond to different mechanisms, either repressing the enzyme's function (e.g. by creating dominant-negative inhibitors of the functional isoform) or creating isoforms with new functions. CONCLUSION: We conclude that alternative splicing of epigenetic regulators can be an important tool for the function modulation of these enzymes. Considering that the latter control the transcriptional state of large sets of genes, we propose that epigenetic regulation of gene expression is itself strongly regulated by alternative splicing. |
format | Text |
id | pubmed-1949830 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-19498302007-08-17 The functional modulation of epigenetic regulators by alternative splicing Lois, Sergio Blanco, Noemí Martínez-Balbás, Marian de la Cruz, Xavier BMC Genomics Research Article BACKGROUND: Epigenetic regulators (histone acetyltransferases, methyltransferases, chromatin-remodelling enzymes, etc) play a fundamental role in the control of gene expression by modifying the local state of chromatin. However, due to their recent discovery, little is yet known about their own regulation. This paper addresses this point, focusing on alternative splicing regulation, a mechanism already known to play an important role in other protein families, e.g. transcription factors, membrane receptors, etc. RESULTS: To this end, we compiled the data available on the presence/absence of alternative splicing for a set of 160 different epigenetic regulators, taking advantage of the relatively large amount of unexplored data on alternative splicing available in public databases. We found that 49 % (70 % in human) of these genes express more than one transcript. We then studied their alternative splicing patterns, focusing on those changes affecting the enzyme's domain composition. In general, we found that these sequence changes correspond to different mechanisms, either repressing the enzyme's function (e.g. by creating dominant-negative inhibitors of the functional isoform) or creating isoforms with new functions. CONCLUSION: We conclude that alternative splicing of epigenetic regulators can be an important tool for the function modulation of these enzymes. Considering that the latter control the transcriptional state of large sets of genes, we propose that epigenetic regulation of gene expression is itself strongly regulated by alternative splicing. BioMed Central 2007-07-25 /pmc/articles/PMC1949830/ /pubmed/17651478 http://dx.doi.org/10.1186/1471-2164-8-252 Text en Copyright © 2007 Lois et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Lois, Sergio Blanco, Noemí Martínez-Balbás, Marian de la Cruz, Xavier The functional modulation of epigenetic regulators by alternative splicing |
title | The functional modulation of epigenetic regulators by alternative splicing |
title_full | The functional modulation of epigenetic regulators by alternative splicing |
title_fullStr | The functional modulation of epigenetic regulators by alternative splicing |
title_full_unstemmed | The functional modulation of epigenetic regulators by alternative splicing |
title_short | The functional modulation of epigenetic regulators by alternative splicing |
title_sort | functional modulation of epigenetic regulators by alternative splicing |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1949830/ https://www.ncbi.nlm.nih.gov/pubmed/17651478 http://dx.doi.org/10.1186/1471-2164-8-252 |
work_keys_str_mv | AT loissergio thefunctionalmodulationofepigeneticregulatorsbyalternativesplicing AT blanconoemi thefunctionalmodulationofepigeneticregulatorsbyalternativesplicing AT martinezbalbasmarian thefunctionalmodulationofepigeneticregulatorsbyalternativesplicing AT delacruzxavier thefunctionalmodulationofepigeneticregulatorsbyalternativesplicing AT loissergio functionalmodulationofepigeneticregulatorsbyalternativesplicing AT blanconoemi functionalmodulationofepigeneticregulatorsbyalternativesplicing AT martinezbalbasmarian functionalmodulationofepigeneticregulatorsbyalternativesplicing AT delacruzxavier functionalmodulationofepigeneticregulatorsbyalternativesplicing |