Cargando…

Desensitization and binding properties determine distinct α1β2γ2 and α3β2γ2 GABA(A) receptor-channel kinetic behavior

GABA(A) receptor subtypes comprising the α1 and α3 subunits change with development and have a specific anatomical localization in the adult brain. These receptor subtypes have been previously demonstrated to greatly differ in deactivation kinetics but the underlying gating mechanisms have not been...

Descripción completa

Detalles Bibliográficos
Autores principales: Barberis, Andrea, Mozrzymas, Jerzy W, Ortinski, Pavel I, Vicini, Stefano
Formato: Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1950087/
https://www.ncbi.nlm.nih.gov/pubmed/17561840
http://dx.doi.org/10.1111/j.1460-9568.2007.05530.x
_version_ 1782134530357854208
author Barberis, Andrea
Mozrzymas, Jerzy W
Ortinski, Pavel I
Vicini, Stefano
author_facet Barberis, Andrea
Mozrzymas, Jerzy W
Ortinski, Pavel I
Vicini, Stefano
author_sort Barberis, Andrea
collection PubMed
description GABA(A) receptor subtypes comprising the α1 and α3 subunits change with development and have a specific anatomical localization in the adult brain. These receptor subtypes have been previously demonstrated to greatly differ in deactivation kinetics but the underlying gating mechanisms have not been fully elucidated. Therefore, we expressed rat α1β2γ2 and α3β2γ2 receptors in human embryonic kidney 293 cells and recorded current responses to ultrafast GABA applications at macroscopic and single-channel levels. We found that the slow deactivation of α3β2γ2-mediated currents is associated with a relatively small rate and extent of apparent desensitization. In contrast, responses mediated by α1β2γ2 receptors had faster deactivation and stronger desensitization. α3β2γ2 receptors had faster recovery in the paired-pulse agonist applications than α1β2γ2 channels. The onset of currents mediated by α3β2γ2 receptors was slower than that of α1β2γ2 for a wide range of GABA concentrations. Single-channel analysis did not reveal differences in the opening/closing kinetics of α1β2γ2 and α3β2γ2 channels but burst durations were longer in α3β2γ2 receptors. Simulation with a previously reported kinetic model was used to explore the differences in respective rate constants. Reproduction of major kinetic differences required a smaller desensitization rate as well as smaller binding and unbinding rates in α3β2γ2 compared with α1β2γ2 receptors. Our work describes the mechanisms underlying the kinetic differences between two major GABA(A) receptor subtypes and provides a framework to interpret data from native GABA receptors.
format Text
id pubmed-1950087
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher Blackwell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-19500872007-09-18 Desensitization and binding properties determine distinct α1β2γ2 and α3β2γ2 GABA(A) receptor-channel kinetic behavior Barberis, Andrea Mozrzymas, Jerzy W Ortinski, Pavel I Vicini, Stefano Eur J Neurosci Research Reports GABA(A) receptor subtypes comprising the α1 and α3 subunits change with development and have a specific anatomical localization in the adult brain. These receptor subtypes have been previously demonstrated to greatly differ in deactivation kinetics but the underlying gating mechanisms have not been fully elucidated. Therefore, we expressed rat α1β2γ2 and α3β2γ2 receptors in human embryonic kidney 293 cells and recorded current responses to ultrafast GABA applications at macroscopic and single-channel levels. We found that the slow deactivation of α3β2γ2-mediated currents is associated with a relatively small rate and extent of apparent desensitization. In contrast, responses mediated by α1β2γ2 receptors had faster deactivation and stronger desensitization. α3β2γ2 receptors had faster recovery in the paired-pulse agonist applications than α1β2γ2 channels. The onset of currents mediated by α3β2γ2 receptors was slower than that of α1β2γ2 for a wide range of GABA concentrations. Single-channel analysis did not reveal differences in the opening/closing kinetics of α1β2γ2 and α3β2γ2 channels but burst durations were longer in α3β2γ2 receptors. Simulation with a previously reported kinetic model was used to explore the differences in respective rate constants. Reproduction of major kinetic differences required a smaller desensitization rate as well as smaller binding and unbinding rates in α3β2γ2 compared with α1β2γ2 receptors. Our work describes the mechanisms underlying the kinetic differences between two major GABA(A) receptor subtypes and provides a framework to interpret data from native GABA receptors. Blackwell Publishing Ltd 2007-05-01 /pmc/articles/PMC1950087/ /pubmed/17561840 http://dx.doi.org/10.1111/j.1460-9568.2007.05530.x Text en © The Authors (2007). Journal Compilation © Federation of European Neuroscience Societies and Blackwell Publishing Ltd
spellingShingle Research Reports
Barberis, Andrea
Mozrzymas, Jerzy W
Ortinski, Pavel I
Vicini, Stefano
Desensitization and binding properties determine distinct α1β2γ2 and α3β2γ2 GABA(A) receptor-channel kinetic behavior
title Desensitization and binding properties determine distinct α1β2γ2 and α3β2γ2 GABA(A) receptor-channel kinetic behavior
title_full Desensitization and binding properties determine distinct α1β2γ2 and α3β2γ2 GABA(A) receptor-channel kinetic behavior
title_fullStr Desensitization and binding properties determine distinct α1β2γ2 and α3β2γ2 GABA(A) receptor-channel kinetic behavior
title_full_unstemmed Desensitization and binding properties determine distinct α1β2γ2 and α3β2γ2 GABA(A) receptor-channel kinetic behavior
title_short Desensitization and binding properties determine distinct α1β2γ2 and α3β2γ2 GABA(A) receptor-channel kinetic behavior
title_sort desensitization and binding properties determine distinct α1β2γ2 and α3β2γ2 gaba(a) receptor-channel kinetic behavior
topic Research Reports
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1950087/
https://www.ncbi.nlm.nih.gov/pubmed/17561840
http://dx.doi.org/10.1111/j.1460-9568.2007.05530.x
work_keys_str_mv AT barberisandrea desensitizationandbindingpropertiesdeterminedistincta1b2g2anda3b2g2gabaareceptorchannelkineticbehavior
AT mozrzymasjerzyw desensitizationandbindingpropertiesdeterminedistincta1b2g2anda3b2g2gabaareceptorchannelkineticbehavior
AT ortinskipaveli desensitizationandbindingpropertiesdeterminedistincta1b2g2anda3b2g2gabaareceptorchannelkineticbehavior
AT vicinistefano desensitizationandbindingpropertiesdeterminedistincta1b2g2anda3b2g2gabaareceptorchannelkineticbehavior