Cargando…

Combined experimental and computational approach to identify non-protein-coding RNAs in the deep-branching eukaryote Giardia intestinalis

Non-protein-coding RNAs represent a large proportion of transcribed sequences in eukaryotes. These RNAs often function in large RNA–protein complexes, which are catalysts in various RNA-processing pathways. As RNA processing has become an increasingly important area of research, numerous non-messeng...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xiaowei (Sylvia), Rozhdestvensky, Timofey S., Collins, Lesley J., Schmitz, Jürgen, Penny, David
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2007
Materias:
RNA
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1950533/
https://www.ncbi.nlm.nih.gov/pubmed/17586815
http://dx.doi.org/10.1093/nar/gkm474
Descripción
Sumario:Non-protein-coding RNAs represent a large proportion of transcribed sequences in eukaryotes. These RNAs often function in large RNA–protein complexes, which are catalysts in various RNA-processing pathways. As RNA processing has become an increasingly important area of research, numerous non-messenger RNAs have been uncovered in all the model eukaryotic organisms. However, knowledge on RNA processing in deep-branching eukaryotes is still limited. This study focuses on the identification of non-protein-coding RNAs from the diplomonad parasite Giardia intestinalis, showing that a combined experimental and computational search strategy is a fast method of screening reduced or compact genomes. The analysis of our Giardia cDNA library has uncovered 31 novel candidates, including C/D-box and H/ACA box snoRNAs, as well as an unusual transcript of RNase P, and double-stranded RNAs. Subsequent computational analysis has revealed additional putative C/D-box snoRNAs. Our results will lead towards a future understanding of RNA metabolism in the deep-branching eukaryote Giardia, as more ncRNAs are characterized.