Cargando…
iGentifier: indexing and large-scale profiling of unknown transcriptomes
Development and refinement of methods to analyse differential gene expression has been essential in the progress of molecular biology. A novel approach called iGentifier is presented for profiling known and unknown transcriptomes, thus bypassing a major limitation in microarray analysis. The iGentif...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1950539/ https://www.ncbi.nlm.nih.gov/pubmed/17591615 http://dx.doi.org/10.1093/nar/gkm331 |
Sumario: | Development and refinement of methods to analyse differential gene expression has been essential in the progress of molecular biology. A novel approach called iGentifier is presented for profiling known and unknown transcriptomes, thus bypassing a major limitation in microarray analysis. The iGentifier technology combines elements of fragment display (e.g. Differential Display or RMDD) and tag sequencing (e.g. SAGE, MPSS) and allows for analysis of samples in high throughput using current capillary electrophoresis equipment. Application to epidermal tissue of wild-type and mlo5 barley (Hordeum vulgare) plants, infected with powdery mildew [Blumeria graminis (DC.) E.O. Speer f.sp.hordei], led to the identification of several 100 genes induced or repressed upon infection with many well known for their response to fungal pathogens or other stressors. Ten of these genes are suggested to be classified as marker genes for durable resistance mediated by the mlo5 resistance gene. |
---|