Cargando…

Divide and Conquer: Enriching Environmental Sequencing Data

BACKGROUND: In environmental sequencing projects, a mix of DNA from a whole microbial community is fragmented and sequenced, with one of the possible goals being to reconstruct partial or complete genomes of members of the community. In communities with high diversity of species, a significant propo...

Descripción completa

Detalles Bibliográficos
Autores principales: Bergeron, Anne, Belcaid, Mahdi, Steward, Grieg F., Poisson, Guylaine
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1952108/
https://www.ncbi.nlm.nih.gov/pubmed/17786202
http://dx.doi.org/10.1371/journal.pone.0000830
Descripción
Sumario:BACKGROUND: In environmental sequencing projects, a mix of DNA from a whole microbial community is fragmented and sequenced, with one of the possible goals being to reconstruct partial or complete genomes of members of the community. In communities with high diversity of species, a significant proportion of the sequences do not overlap any other fragment in the sample. This problem will arise not only in situations with a relatively even distribution of many species, but also when the community in a particular environment is routinely dominated by the same few species. In the former case, no genomes may be assembled at all, while in the latter case a few dominant species in an environment will always be sequenced at high coverage to the detriment of coverage of the greater number of sparse species. METHODS AND RESULTS: Here we show that, with the same global sequencing effort, separating the species into two or more sub-communities prior to sequencing can yield a much higher proportion of sequences that can be assembled. We first use the Lander-Waterman model to show that, if the expected percentage of singleton sequences is higher than 25%, then, under the uniform distribution hypothesis, splitting the community is always a wise choice. We then construct simulated microbial communities to show that the results hold for highly non-uniform distributions. We also show that, for the distributions considered in the experiments, it is possible to estimate quite accurately the relative diversity of the two sub-communities. CONCLUSION: Given the fact that several methods exist to split microbial communities based on physical properties such as size, density, surface biochemistry, or optical properties, we strongly suggest that groups involved in environmental sequencing, and expecting high diversity, consider splitting their communities in order to maximize the information content of their sequencing effort.