Cargando…

Only Half Right: Species with Female-Biased Sexual Size Dimorphism Consistently Break Rensch's Rule

BACKGROUND: Most animal species display Sexual Size Dimorphism (SSD): males and females consistently attain different sizes, most frequently with females being larger than males. However the selective mechanisms driving patterns of SSD remain controversial. ‘Rensch's rule’ proposes a general sc...

Descripción completa

Detalles Bibliográficos
Autores principales: Webb, Thomas J., Freckleton, Robert P.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1964802/
https://www.ncbi.nlm.nih.gov/pubmed/17878932
http://dx.doi.org/10.1371/journal.pone.0000897
Descripción
Sumario:BACKGROUND: Most animal species display Sexual Size Dimorphism (SSD): males and females consistently attain different sizes, most frequently with females being larger than males. However the selective mechanisms driving patterns of SSD remain controversial. ‘Rensch's rule’ proposes a general scaling phenomenon for all taxa, whereby SSD increases with average body size when males are larger than females, and decreases with body size when females are larger than males. Rensch's rule appears to be general in the former case, but there is little evidence for the rule when females are larger then males. METHODOLOGY/PRINCIPAL FINDINGS: Using comprehensive data for 1291 species of birds across 30 families, we find strong support for Rensch's rule in families where males are typically larger than females, but no overall support for the rule in families with female-biased SSD. Reviewing previous studies of a broad range of taxa (arthropods, reptiles, fish and birds) showing predominantly female-biased SSD, we conclude that Rensch's conjecture is the exception rather than the rule in such species. CONCLUSIONS/SIGNIFICANCE: The absence of consistent scaling of SSD in taxa with female-biased SSD, the most prevalent direction of dimorphism, calls into question previous general evolutionary explanations for Rensch's rule. We propose that, unlike several other ecological scaling relationships, Rensch's rule does not exist as an independent scaling phenomenon.