Cargando…
cDNA transfection followed by the isolation of a MCF-7 breast cell line resistant to tamoxifen in vitro and in vivo.
A tamoxifen resistant cell line (clone 9) has been isolated from the tamoxifen sensitive, hormone responsive MCF-7 breast carcinoma cell line after transfection with mixed cDNA libraries, followed by tamoxifen selection in the presence of oestrogens. Transfection was confirmed by Southern analysis w...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
1993
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1968663/ https://www.ncbi.nlm.nih.gov/pubmed/8260359 |
Sumario: | A tamoxifen resistant cell line (clone 9) has been isolated from the tamoxifen sensitive, hormone responsive MCF-7 breast carcinoma cell line after transfection with mixed cDNA libraries, followed by tamoxifen selection in the presence of oestrogens. Transfection was confirmed by Southern analysis with vector probes. Clone 9 in several-fold more resistant to tamoxifen and other anti-oestrogens than wild type cells when cultured either as a monolayer or as colonies in soft agar but retains oestrogen receptors. Clone 9 was less responsive to 17-beta-oestradiol than were wild type MCF-7. In addition to showing in vitro tamoxifen resistance, clone 9 was also tamoxifen resistant in vivo when xenografted into the nude mouse. Culture medium conditioned by clone 9 cells stimulated quiescent cells of the same clone as well as wild type cells, whereas medium conditioned by wild type MCF-7 was inhibitory to both, suggesting that clone 9 may be secreting an autocrine growth factor. Clone 9 provides a novel model for further investigation of the mechanism of anti-oestrogen resistance that occurs without loss of oestrogen receptors. Preliminary results suggest that an autocrine growth stimulatory mechanism may be one pathway of such resistance. IMAGES: |
---|