Cargando…
Increase in mast cells and hyaluronic acid correlates to radiation-induced damage and loss of serous acinar cells in salivary glands: the parotid and submandibular glands differ in radiation sensitivity.
The detailed mechanisms which can explain the inherent radiosensitivity of salivary glands remain to be elucidated. Although DNA is the most plausible critical target for the lethal effects of irradiation, interactions with other constituents, such as cell membrane and neuropeptides, have been sugge...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
1994
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1968701/ https://www.ncbi.nlm.nih.gov/pubmed/8297728 |
Sumario: | The detailed mechanisms which can explain the inherent radiosensitivity of salivary glands remain to be elucidated. Although DNA is the most plausible critical target for the lethal effects of irradiation, interactions with other constituents, such as cell membrane and neuropeptides, have been suggested to cause important physiological changes. Moreover, mast cells seem to be closely linked to radiation-induced pneumonitis. Therefore, in the present study the effects of fractionated irradiation on salivary glands have been assessed with special regard to the appearance of mast cells and its correlation with damage to gland parenchyma. Sprague-Dawley strain rats were unilaterally irradiated to the head and neck with the salivary glands within the radiation field. The irradiation was delivered once daily for 5 days to a total dose of 20, 35 and 45 Gy. The contralateral parotid and submandibular glands served as intra-animal controls and parallel analysis of glands was performed 2, 4, 10 or 180 days following the last radiation treatment. Morphological analysis revealed no obvious changes up to 10 days after the irradiation. At 180 days a radiation dose-dependent loss of gland parenchyma was seen, especially with regard to serious acinar cells in parotid gland and acinar cells and serous CGT (convoluted granular tubule) cells in the submandibular gland. These changes displayed a close correlation with a concomitant dose-dependent enhanced density of mast cells and staining for hyaluronic acid. This cell population seems to conform with the features of the connective tissue mast cell type. The parotid seems to be more sensitive to irradiation than the submandibular gland. Thus, the present results further strengthen the role of and the potential interaction of mast cells with radiation-induced tissue injury and alterations in normal tissue integrity. IMAGES: |
---|