Cargando…

Altered stability of etoposide-induced topoisomerase II-DNA complexes in resistant human leukaemia K562 cells.

K562 leukaemia cells were selected for resistance using 0.5 microM etoposide (VP-16). Cloned K/VP.5 cells were 30-fold resistant to growth inhibition by VP-16 and 5- to 13-fold resistant to m-AMSA, adriamycin and mitoxantrone. K/VP.5 cells did not overexpress P-glycoprotein; VP-16 accumulation was s...

Descripción completa

Detalles Bibliográficos
Autores principales: Ritke, M. K., Roberts, D., Allan, W. P., Raymond, J., Bergoltz, V. V., Yalowich, J. C.
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1968798/
https://www.ncbi.nlm.nih.gov/pubmed/8142256
Descripción
Sumario:K562 leukaemia cells were selected for resistance using 0.5 microM etoposide (VP-16). Cloned K/VP.5 cells were 30-fold resistant to growth inhibition by VP-16 and 5- to 13-fold resistant to m-AMSA, adriamycin and mitoxantrone. K/VP.5 cells did not overexpress P-glycoprotein; VP-16 accumulation was similar to that in K562 cells. VP-16-induced DNA damage was reduced in cells and nuclei from K/VP.5 cells compared with K562 cells. Topoisomerase II protein was reduced 3- to 7-fold and topoisomerase II alpha and topoisomerase II beta mRNAs were each reduced 3-fold in resistant cells. After drug removal, VP-16-induced DNA damage disappeared 1.7 times more rapidly and VP-16-induced DNA-topoisomerase II adducts dissociated 1.5 times more rapidly in K/VP.5 cells than in K562 cells. ATP (1 mM) was more effective in enhancing VP-16-induced DNA damage in nuclei isolated from sensitive cells than in nuclei from resistant cells. In addition, ATP (0.3-5 mM) stimulated VP-16-induced DNA-topoisomerase II adducts to a greater extent in K562 nuclei than in K/VP.5 nuclei. Taken together, these results indicate that resistance to VP-16 in a K562 subline is associated with a quantitative reduction in topoisomerase II protein and, in addition, a distinct qualitative alteration in topoisomerase II affecting the stability of drug-induced DNA-topoisomerase II complexes. IMAGES: